Dynamic Spatial Positioning: Physical Collaboration around Interactive Table by Children in India

  • Izdihar Jamil
  • Kenton O’Hara
  • Mark Perry
  • Abhijit Karnik
  • Mark T. Marshall
  • Swathi Jha
  • Sanjay Gupta
  • Sriram Subramanian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8120)


We present a study of how children demonstrate physicality during collaboration around interactive tables at school. Our results show that children tend to dynamically position themselves around the tabletop area to effect particular social outcomes. These movements around the tabletop allow them to enact coordination strategies in their social interactions with each other to manage their learning and task-based activities. Our analysis indicates the importance of understanding physical strategies and behaviours when designing and deploying interactive tables in classrooms. We discuss how the design of tabletops in school can embrace the extensibility of this technology, providing access for children to shape their own collaboration strategies during learning.


Interaction techniques tabletop spatial formation dynamic spatial position collaborative learning children and India 


  1. 1.
    Eisenberg, A.R., Garvey, C.: Children’s use of verbal strategies in resolving conflicts. Discourse Processes 4, 149–170 (1981)CrossRefGoogle Scholar
  2. 2.
    Engleberg, I., Wynn, D.: Working in Groups. Communication Principles and Strategies. Houghton Mifflin Company (2000)Google Scholar
  3. 3.
    Goodwin, C.: Pointing as Situated Practise. In: Kita, S. (ed.) Pointing: Where Language, Culture and Cognition Meet, pp. 217–241. Lawrence Erlbaum (2003)Google Scholar
  4. 4.
    Han, J.Y.: Low-cost multi-touch sensing through frustrated total internal reflection. In: Proc. of UIST, pp. 115–118. ACM (2005)Google Scholar
  5. 5.
    Harris, A., Rick, J., Bonnett, V., Yuill, N., Fleck, R., Marshall, P., Rogers, Y.: Around the table: are multiple-touch surfaces better than single-touch for children’s collaborative interactions? In: Proc. of CSCL, pp. 335–344 (2009)Google Scholar
  6. 6.
    Hornecker, E., Marshall, P., Dalton, N.S., Rogers, Y.: Collaboration and interference: Awareness with Mice or Touch Input. In: Proc. of CSCW, pp. 167–176. ACM (2008)Google Scholar
  7. 7.
    Jamil, I., O’Hara, K., Perry, M., Karnik, A., Subramanian, S.: The Effects of Interaction Techniques on Talk Patterns in Collaborative Peer Learning around Interactive Tables. In: Proc. of CHI, pp. 3043–3052. ACM (2011)Google Scholar
  8. 8.
    Jamil, I., Perry, M., O’Hara, K., Karnik, A., Marshall, M.T., Jha, S., Gupta, S., Subramanian, S.: Group Interaction on Interactive Multi-touch Tables by Children in India. In: Proc. of IDC, pp. 224–227. ACM (2010)Google Scholar
  9. 9.
    Jordan, B., Henderson, A.: Interaction Analysis: Foundations and Practice. The Journal of Learning Sciences 4, 39–103 (1995)CrossRefGoogle Scholar
  10. 10.
    Kendon, A.: Conducting interaction. Patterns of behavior in focused encounters. Cambridge University Press (1990)Google Scholar
  11. 11.
    Kirschner, F., Paas, F., Kirschner, P.A.: A Cognitive Load Approach to Collaborative Learning: United Brains for Complex Tasks. Ed. Psy. 21, 31–42 (2009)Google Scholar
  12. 12.
    Klinkhammer, D., Nitsche, M., Specht, M., Reiterer, H.: Adaptive personal territories for co-located tabletop interaction in a museum setting. In: Proc. of ITS, pp. 107–110. ACM (2011)Google Scholar
  13. 13.
    Kruger, A.C., Tomasello, M.: Transactive discussions with peers and adults. Developmental Psychology 22, 681–685 (1986)CrossRefGoogle Scholar
  14. 14.
    Kruger, R., Carpendale, S., Scott, S.D., Greenberg, S.: Roles of Orientation in Tabletop Collaboration: Comprehension, Coordination and Communication. In: Proc. of CSCW, pp. 501–537. ACM (2004)Google Scholar
  15. 15.
    Marshall, P., Fleck, R., Harris, A., Rick, J., Hornecker, E., Rogers, Y., Yuill, N., Dalton, N.S.: Fighting for Control: Children’s Embodied Interactions When Using Physical and Digital Representations. In: CHI, pp. 2149–2152. ACM (2009)Google Scholar
  16. 16.
    Marshall, P., Morris, R., Rogers, Y., Kreitmayer, S., Davies, M.: Rethinking ‘Multi-User’: An In-the-Wild Study of how Groups Approach a Walk-Up-and-Use Tabletop Interface. In: Proc. of CHI, pp. 3033–3042. ACM (2011)Google Scholar
  17. 17.
    Marshall, P., Rogers, Y., Pantidi, N.: Using F-formations to Analyse Spatial Patterns of Interaction in Physical Environments. In: Proc. of CSCW, pp. 445–454. ACM (2011)Google Scholar
  18. 18.
    Nacenta, M.A., Pinelle, D., Stuckel, D., Gutwin, C.: The effects of interaction technique on coordination in tabletop groupware. In: Proc. of GI, pp. 191–198. ACM (2007)Google Scholar
  19. 19.
    Olson, I.C., Leong, Z.A., Wilensky, U., Horn, M.S.: “It’s just a toolbar!” Using Tangibles to Help Children Manage Conflict Around a Multi-Touch Tabletop. In: Proc. of TEI, pp. 29–36. ACM (2011)Google Scholar
  20. 20.
    Pawar, U.S., Pal, J., Gupta, R., Toyama, K.: Multiple mice for retention tasks in disadvantaged schools. In: Proc. of CHI, pp. 1581–1590. ACM (2007)Google Scholar
  21. 21.
    Piper, A.M., O’Brien, E., Morris, M.R., Winograd, T.: SIDES: A cooperative tabletop computer game for social skills development. In: Proc. of CSCW, pp. 1–10. ACM (2006)Google Scholar
  22. 22.
    Rick, J., Harris, A., Marshall, P., Fleck, R., Yuill, N., Rogers, Y.: Children designing together on a multi-touch tabletop: an analysis of spatial orientation and user interactions. In: Proc. of IDC, pp. 106–114. ACM (2009)Google Scholar
  23. 23.
    Rogers, Y., Lim, Y.-K., Hazlewood, W., Marshall, P.: Equal Opportunities: Do Shareable Interfaces Promote More Group Participation Than Single User Displays? Human-Computer Interaction 24, 79–116 (2009)CrossRefGoogle Scholar
  24. 24.
    Scott, S., Sheelagh, M., Carpendale, T., Inkpen, K.: Territoriality in collaborative tabletop workspaces. In: Proc. of CSCW, pp. 294–303. ACM Press (2004)Google Scholar
  25. 25.
    Segal, L.: Designing Team Workstations: The Choreography of Teamwork. In: Local Applications of the Ecological Approach to Human-Machine Systems (1995)Google Scholar
  26. 26.
    Suzuki, H., Kato, H.: Interaction-level support for collaborative learning: AlgoBlock-an open programming language. In: Proc. of CSCL, pp. 349–355 (1995)Google Scholar
  27. 27.
    Tang, A., Tory, M., Po, B., Neumann, P., Carpendale, S.: Collaborative coupling over tabletop displays. In: Proc. of CHI, pp. 1181–1190. ACM (2006)Google Scholar
  28. 28.
    Teasley, S.: The Role of Talk in Children’s Peer Collaborations. Developmental Psychology 1, 207–220 (1995)CrossRefGoogle Scholar
  29. 29.
    Yamashita, N., Kuzuoka, H., Hirata, K., Aoyagi, S., Shirai, Y.: Supporting fluid tabletop collaboration across distances. In: Proc. of CHI, pp. 2827–2836. ACM (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Izdihar Jamil
    • 1
  • Kenton O’Hara
    • 2
  • Mark Perry
    • 3
    • 4
  • Abhijit Karnik
    • 1
  • Mark T. Marshall
    • 1
  • Swathi Jha
    • 5
  • Sanjay Gupta
    • 5
  • Sriram Subramanian
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK
  2. 2.Microsoft ResearchCambridgeUK
  3. 3.Brunel UniversityUK
  4. 4.Mobile Life, Interactive InstituteSweden
  5. 5.NIITDelhiIndia

Personalised recommendations