Application of Graph Cellular Automata in Social Network Based Recommender System

  • Krzysztof Małecki
  • Jarosław Jankowski
  • Mateusz Rokita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8083)

Abstract

Recommending systems are used in various areas of electronic commerce. Social platforms make it possible to design recommender systems based on social network analysis and connections between users. This paper presents an alternative approach, which uses graph cellular automata. Empirical research was based on datasets from social platforms that confirmed the effectiveness of the proposed solution and is a motivation for extended research in this area.

Keywords

social networks recommender systems graph-based cellular automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Albanese, M., d’Acierno, A., Moscato, V., Persia, F., Picariello, A.: A Multimedia Semantic Recommender System for Cultural Heritage Applications. In: Proceedings of 15th IEEE International Conference on Semantic Computing, pp. 403–410 (2011)Google Scholar
  3. 3.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54. ACM, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Boyd, D.M., Ellison, N.B.: Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication 13(1), 210–230 (2007)CrossRefGoogle Scholar
  5. 5.
    Chi-Hsuan, W., Sheng-Tzong, C.: Using cellular automata on recommendation mechanism for smart parking in vehicular environments. In: Proceedings of 2nd International Conference on Consumer Electronics, Communications and Networks, pp. 3683–3686 (2012)Google Scholar
  6. 6.
    Degemmis, M., Lops, P., Semeraro, G.: A content-collaborative recommender that exploits WordNet-based user profiles for neighborhood formation. User Modeling and User-Adapted Interaction 17(3), 217–255 (2007)CrossRefGoogle Scholar
  7. 7.
    Ducheneaut, N., Yee, N., Nickel, E., Moore, R.: Alone Together - Exploring the Social Dynamics of Massively Multiplayer Online Games. In: Proceedings of ACM CHI 2006 Conference on Human Factors, Quebec, pp. 407–416 (2006)Google Scholar
  8. 8.
    Flake, G., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 150–160. ACM Press (2000)Google Scholar
  9. 9.
    Forsati, R., Meybodi, M.R.: Effective page recommendation algorithms based on distributed learning automata and weighted association rules. Expert Systems and Applications 37(2), 1316–1330 (2010)CrossRefGoogle Scholar
  10. 10.
    Fuchs, C.: Towards a dynamic theory of virtual communities. International Journal of Knowledge and Learning 3(4/5), 372–403 (2007)CrossRefGoogle Scholar
  11. 11.
    Hanneman, R., Riddle, M.: Introduction to social network methods. Online textbook (2005), http://faculty.ucr.edu/~hanneman/nettext
  12. 12.
    He, J., Chu, W.W.: A Social Network Based Recommender System. Annals of Information Systems. Special Issue on Data Mining for Social Network Data 12, 47–74 (2009)CrossRefGoogle Scholar
  13. 13.
    Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the ACM Conference on Computer Supported Cooperative, pp. 241–250. ACM Press, New York (2000)Google Scholar
  14. 14.
    Hołowiński, G., Małecki, K.: Grafowy automat komórkowy o zmiennych sąsiedztwach relacyjnych komórek – założenia do implementacji w FPGA. Pomiary Automatyka Kontrola 8, 861–863 (2011)Google Scholar
  15. 15.
    Jamali, M., Haffari, G., Ester, M.: Modeling the temporal dynamics of social rating networks using bidirectional effects of social relations and rating patterns. In: Proceedings of the 20th International Conference on World Wide Web, pp. 527–536. ACM, New York (2011)CrossRefGoogle Scholar
  16. 16.
    Jankowski, J.: Modeling the structure of recommending interfaces with adjustable influence on users. In: Selamat, A., Nguyen, N.T., Haron, H. (eds.) ACIIDS 2013, Part II. LNCS, vol. 7803, pp. 429–438. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Jankowski, J., Michalski, R., Kazienko, P.: The Multidimensional Study of Viral Campaigns as Branching Processes. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 462–474. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Kazienko, P., Musiał, K., Kajdanowicz, T.: Multidimensional Social Network in the Social Recommender System. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 41(4), 746–759 (2011)CrossRefGoogle Scholar
  19. 19.
    Kazienko, P.: Mining Indirect Association Rules for Web Recommendation. International Journal of Applied Mathematics and Computer Science 19(1), 165–186 (2009)CrossRefMATHGoogle Scholar
  20. 20.
    Kim, S., Yum, B.J., Song, J., Kim, S.M.: Development of a recommender system based on navigational and behavioral patterns of customers in e-commerce sites. Expert Systems with Applications 28(2), 381–393 (2005)CrossRefGoogle Scholar
  21. 21.
    Kułakowski, K.: Automaty Komórkowe. Kraków: Wydawnictwo Akademii Górniczo-Hutniczej (2000)Google Scholar
  22. 22.
    Leskovec, J., Singh, A., Kleinberg, J.: Patterns of Influence in a Recommendation Network. In: Ng, W.K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 380–389. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Matsuo, Y., Yamamoto, H.: Community gravity: measuring bidirectional effects by trust and rating on onlinesocial networks. In: Proceedings of the 18th International Conference on World Wide Web, pp. 751–760. ACM, New York (2009)CrossRefGoogle Scholar
  24. 24.
    McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: How accuracy metrics have hurt recommender systems. In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, pp. 1097–1101. ACM, New York (2006)Google Scholar
  25. 25.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology 27, 415–444 (2001)CrossRefGoogle Scholar
  26. 26.
    Mitrovic, M., Tadic, B.: Bloggers Behavior and Emergent Communities in Blog Space. The European Physical Journal B - Condensed Matter and Complex Systems 73(2), 293–301 (2010)CrossRefMATHGoogle Scholar
  27. 27.
    Talabeigi, M., Forsati, R., Meybodi, M.R.: A Hybrid Web Recommender System Based on Cellular Learning Automata. In: Proceedings of IEEE International Conference on Granular Computing, pp. 453–458 (2010)Google Scholar
  28. 28.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, New York (1994)Google Scholar
  29. 29.
    Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cambridge University Press, New York (1994)CrossRefGoogle Scholar
  30. 30.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)MATHGoogle Scholar
  31. 31.
    Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Krzysztof Małecki
    • 1
  • Jarosław Jankowski
    • 1
  • Mateusz Rokita
    • 1
  1. 1.Faculty of Computer ScienceWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations