Complexity and Interaction: Blurring Borders between Physical, Computational, and Social Systems

Preliminary Notes
  • Andrea Omicini
  • Pierluigi Contucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8083)


Complex systems of any kind are characterised by autonomous components interacting with each other in a non-trivial way. In this paper we discuss how the views on complexity are evolving in fields like physics, social sciences, and computer science, and – most significantly – how they are converging.

In particular, we focus on the role of interaction as the foremost dimension for modelling complexity, and discuss first how coordination via mediated interaction could determine the general dynamics of complex software system, then how this applies to complex socio-technical systems like social networks.


Complex systems interaction interacting systems statistical mechanics coordination models socio-technical systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simon, H.A.: The architecture of complexity. Proceedings of the American Philosophical Society 106(6), 467–482 (1962)Google Scholar
  2. 2.
    Kauffman, S.A.: Investigations. Oxford University Press (January 2003)Google Scholar
  3. 3.
    Wegner, P.: Why interaction is more powerful than algorithms. Communications of the ACM 40(5), 80–91 (1997)CrossRefGoogle Scholar
  4. 4.
    Omicini, A., Ricci, A., Viroli, M.: The multidisciplinary patterns of interaction from sciences to Computer Science. In: Goldin, D.Q., Smolka, S.A., Wegner, P. (eds.) Interactive Computation: The New Paradigm, pp. 395–414. Springer (September 2006)Google Scholar
  5. 5.
    Gelernter, D., Carriero, N.: Coordination languages and their significance. Communications of the ACM 35(2), 97–107 (1992)CrossRefGoogle Scholar
  6. 6.
    Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007); Special Issue on Environments for Multi-agent SystemsGoogle Scholar
  7. 7.
    Ricci, A., Viroli, M.: Coordination artifacts: A unifying abstraction for engineering environment-mediated coordination in MAS. Informatica 29(4), 433–443 (2005)Google Scholar
  8. 8.
    Omicini, A.: Agents writing on walls: Cognitive stigmergy and beyond. In: Paglieri, F., Tummolini, L., Falcone, R., Miceli, M. (eds.) The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi. Tributes, vol. 20, pp. 543–556. College Publications, London (2012)Google Scholar
  9. 9.
    Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: Infrastructures for the environment of multiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 49–60 (2007) (Special Issue: Environment for Multi-Agent Systems)Google Scholar
  10. 10.
    Boltzmann, L.: Lectures on Gas Theory. University of California Press (1964)Google Scholar
  11. 11.
    Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press (January 1993)Google Scholar
  12. 12.
    Bouchaud, J.P., Potters, M.: Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  13. 13.
    Mantegna, R.N., Stanley, H.E.: Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  14. 14.
    Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, Oxford (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. International Series of Monographs on Physics, vol. 111. Clarendon Press, Oxford (2001)CrossRefGoogle Scholar
  16. 16.
    Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. An Introduction to the Replica Method and Its Applications. World Scientific Lecture Notes in Physics, vol. 9. World Scientific, Singapore (1986)Google Scholar
  17. 17.
    Contucci, P., Giardinà, C.: Perspectives on Spin Glasses. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  18. 18.
    Stanley, H.E.: Econophysics and the current economic turmoil. American Physical Society News 17(11), 8 (2008); The Back PageGoogle Scholar
  19. 19.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  20. 20.
    Granovetter, M.S.: The strength of weak ties. American Journal of Sociology 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  21. 21.
    FaceBook: Home page,
  22. 22.
    LiquidFeedback: Home page,
  23. 23.
    Ciancarini, P.: Coordination models and languages as software integrators. ACM Computing Surveys 28(2), 300–302 (1996)CrossRefGoogle Scholar
  24. 24.
    Ciancarini, P., Omicini, A., Zambonelli, F.: Coordination technologies for Internet agents. Nordic Journal of Computing 6(3), 215–240 (1999)Google Scholar
  25. 25.
    Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming Languages and Systems 7(1), 80–112 (1985)CrossRefzbMATHGoogle Scholar
  26. 26.
    Arbab, F.: Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science 14, 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wegner, P.: Coordination as constrained interaction (extended abstract). In: Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 15–17. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  28. 28.
    Zavattaro, G.: On the incomparability of Gamma and Linda. Technical Report SEN-R9827, CWI, Amsterdam, The Netherlands (October 1998)Google Scholar
  29. 29.
    Denti, E., Natali, A., Omicini, A.: On the expressive power of a language for programming coordination media. In: 1998 ACM Symposium on Applied Computing, SAC 1998, Atlanta, GA, USA, February 27-March 1, pp. 169–177. ACM (1998); Special Track on Coordination Models, Languages and ApplicationsGoogle Scholar
  30. 30.
    Omicini, A.: Nature-inspired coordination for complex distributed systems. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) Intelligent Distributed Computing VI. SCI, vol. 446, pp. 1–6. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artificial Life 5(2), 97–116 (1999)CrossRefGoogle Scholar
  32. 32.
    Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: Towards a framework based on agents and artifacts. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    O’Reilly, T.: What is Web 2.0: Design patterns and business models for the next generation of software. Communications & Strategies 65(1st Quarter), 17–37 (2007)Google Scholar
  34. 34.
    Verhagen, H., Noriega, P., Balke, T., de Vos, M. (eds.): Social Coordination: Principles, Artefacts and Theories (SOCIAL.PATH), AISB Convention 2013, University of Exeter, UK, April 3-5. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrea Omicini
    • 1
  • Pierluigi Contucci
    • 1
  1. 1.Alma Mater StudiorumUniversità di BolognaItaly

Personalised recommendations