CapTUI: Geometric Drawing with Tangibles on a Capacitive Multi-touch Display

  • Rachel Blagojevic
  • Beryl Plimmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8117)

Abstract

We present CapTUI, an innovative drawing tool that detects tangible drawing instruments on a capacitive multi-touch tablet. There are three core components to the system: the tangible hardware, the recognizer used to identify the tangibles and the drawing software that works in tandem with the tangibles to provide intelligent visual drawing guides. Our recognizable tangible drawing instruments are a ruler, protractor and set square. Users employ these familiar physical instruments to construct digital ink drawings on a tablet in an intuitive and engaging manner. The visual drawing guides enhance the experience by offering the user helpful cues and functionalities to assist them to draw more accurately. A user evaluation comparing CapTUI to an application with passive tools showed that users significantly preferred CapTUI and found that the visual guides provide greater accuracy when drawing.

Keywords

TUI tangible multi-touch physical interaction capacitive drawing tools 

References

  1. 1.
    Marzola, E.S.: Using Manipulatives in Math Instruction. Journal of Reading, Writing, and Learning Disabilities International 3, 9–20 (1987)CrossRefGoogle Scholar
  2. 2.
    Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K., Silverman, B.: Digital manipulatives: new toys to think with. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 281–287. ACM Press/Addison-Wesley Publishing Co. (1998)Google Scholar
  3. 3.
    Uttal, D.H., Scudder, K.V., DeLoache, J.S.: Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology 18, 37–54 (1997)CrossRefGoogle Scholar
  4. 4.
    Tuddenham, P., Kirk, D., Izadi, S.: Graspables revisited: multi-touch vs. tangible input for tabletop displays in acquisition and manipulation tasks. In: Proceedings of the International Conference on Human Factors in Computing Systems, pp. 2223–2232. ACM, New York (2010)CrossRefGoogle Scholar
  5. 5.
    Ullmer, B., Ishii, H.: The metaDESK: models and prototypes for tangible user interfaces. In: Proceedings of User Interface Software and Technology, pp. 223–232. ACM, New York (1997)Google Scholar
  6. 6.
    Baudisch, P., Becker, T., Rudeck, F.: Lumino: tangible blocks for tabletop computers based on glass fiber bundles. In: Proceedings of the International Conference on Human Factors in Computing Systems, pp. 1165–1174 (2010)Google Scholar
  7. 7.
    Wellner, P.: The DigitalDesk calculator: tangible manipulation on a desk top display. In: Proceedings of User Interface Software and Technology, pp. 27–33. ACM, New York (1991)Google Scholar
  8. 8.
    Fitzmaurice, G.W., Ishii, H., Buxton, W.: Bricks: Laying the Foundations for Graspable User Interfaces. In: Proceedings of CHI 1995, pp. 442–449. ACM Press/Addison-Wesley Publishing Co., New York (1995)Google Scholar
  9. 9.
    Yu, N.-H., Chan, L.-W., Lau, S.Y., Tsai, S.-S., Hsiao, I.-C., Tsai, D.-J., Hsiao, F.-I., Cheng, L.-P., Chen, M., Huang, P., Hung, Y.-P.: TUIC: enabling tangible interaction on capacitive multi-touch displays. In: Proceedings of the Conference on Human Factors in Computing Systems, pp. 2995–3004. ACM, New York (2011)Google Scholar
  10. 10.
    Inhelder, B., Piaget, J.: The early growth of logic in the child. Harper & Row, New York (1964)Google Scholar
  11. 11.
    Piaget, J.: Play, dreams, and imitation in childhood. Norton, New York (1962)Google Scholar
  12. 12.
    Fails, J.A., Druin, A., Guha, M.L., Chipman, G., Simms, S., Churaman, W.: Child’s play: a comparison of desktop and physical interactive environments. In: Proceedings of Interaction Design and Children, pp. 48–55. ACM, New York (2005)Google Scholar
  13. 13.
    Sitdhisanguan, K., Dechaboon, A., Chotikakamthorn, N., Out, P.: Comparative study of WIMP and tangible user interfaces in training shape matching skill for autistic children. In: TENCON 2007, pp. 1–4 (2007)Google Scholar
  14. 14.
    Chipman, G., Fails, J.A., Druin, A., Guha, M.L.: Paper vs. tablet computers: a comparative study using Tangible Flags. In: Proceedings of the International Conference on Interaction Design and Children, pp. 29–36. ACM, New York (2011)Google Scholar
  15. 15.
    Olson, I.C., Leong, Z.A., Wilensky, U., Horn, M.S.: It’s just a toolbar!: using tangibles to help children manage conflict around a multi-touch tabletop. In: Proceedings of Tangible, Embedded, and Embodied Interaction, pp. 29–36. ACM, New York (2010)Google Scholar
  16. 16.
    Schneider, B., Jermann, P., Zufferey, G., Dillenbourg, P.: Benefits of a Tangible Interface for Collaborative Learning and Interaction. IEEE Trans. Learn. Technol. 4(3), 222–232 (2011)CrossRefGoogle Scholar
  17. 17.
    Druin, A., Montemayor, J., Hendler, J., McAlister, B., Boltman, A., Fiterman, E., Plaisant, A., Kruskal, A., Olsen, H., Revett, I., Schwenn, T.P., Sumida, L., Wagner, R.: Designing PETS: A personal electronic teller of stories. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 326–329. ACM, New York (1999)Google Scholar
  18. 18.
    Karime, A., Hossain, M.A., Gueaieb, W., Saddik, A.E.: Magic stick: a tangible interface for the edutainment of young children. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 1338–1341. IEEE Press, Piscataway (2009)Google Scholar
  19. 19.
    Xie, L., Antle, A.N., Motamedi, N.: Are tangibles more fun?: comparing children’s enjoyment and engagement using physical, graphical and tangible user interfaces. In: Proceedings of Tangible and Embedded Interaction, pp. 191–198. ACM, New York (2008)CrossRefGoogle Scholar
  20. 20.
    Price, S., Sheridan, J.G., Pontual Falcão, T., Roussos, G.: Towards a Framework for Investigating Tangible Environments for Learning. International Journal of Arts and Technology Special Issue on Tangible and Embedded Interaction 1(3/4), 351–368 (2008)Google Scholar
  21. 21.
    Scarlatos, L.L.: Tangible Math. Special Issue on Computer Game-Based Learning. International Journal of Interactive Technology and Smart Education 3(4), 293–309 (2006)CrossRefGoogle Scholar
  22. 22.
    Hohenwarter, M., Jones, K.: Ways of linking geometry and algebra: the case of Geogebra. Proceedings of the British Society for Research into Learning Mathematics 27(3), 126–131 (2007)Google Scholar
  23. 23.
    Straesser, R.: Cabri-géomètre: Does Dynamic Geometry Software (DGS) Change Geometry and its Teaching and Learning? International Journal of Computers for Mathematical Learning 6, 319–333 (2002)CrossRefGoogle Scholar
  24. 24.
    Rekimoto, J.: SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 113–120. ACM (2002)Google Scholar
  25. 25.
    Chan, L., Müller, S., Roudaut, A., Baudisch, P.: CapStones and ZebraWidgets: sensing stacks of building blocks, dials and sliders on capacitive touch screens. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 2189–2192. ACM, New York (2012)Google Scholar
  26. 26.
    Kratz, S., Westermann, T., Rohs, M., Essl, G.: CapWidgets: tangible widgets versus multi-touch controls on mobile devices. In: Extended Abstracts on Human Factors in Computing Systems, pp. 1351–1356. ACM (2011)Google Scholar
  27. 27.
    Jansen, Y., Dragicevic, P., Fekete, J.-D.: Tangible remote controllers for wall-size displays. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 2865–2874. ACM (2012)Google Scholar
  28. 28.
    Sutherland, I.E.: Sketchpad: A man-machine graphical communication system. In: Spring Joint Computer Conference: American Federation Information Processing Societies, pp. 329–346 (1963)Google Scholar
  29. 29.
    Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., Buxton, W.: Digital tape drawing. In: Proceedings of User Interface Software and Technology, pp. 161–169 (1999)Google Scholar
  30. 30.
    Couture, N., Riviere, G., Reuter, P.: GeoTUI: a tangible user interface for geoscience. In: Proceedings of Tangible and Embedded Interaction, pp. 89–96. ACM (2008)Google Scholar
  31. 31.
    Wiethoff, A., Schneider, H., Rohs, M., Butz, A., Greenberg, S.: Sketch-a-TUI: low cost prototyping of tangible interactions using cardboard and conductive ink. In: Proceedings of the International Conference on Tangible, Embedded and Embodied Interaction, pp. 309–312. ACM (2012)Google Scholar
  32. 32.
    Hse, H., Newton, A.R.: Recognition and Beautification of Multi-Stroke Symbols in Digital Ink. In: AAAI Fall Symposium Series, pp. 78–84 (2004)Google Scholar
  33. 33.
    Blagojevic, R., Chen, X., Tan, R., Sheehan, R., Plimmer, B.: Using tangible drawing tools on a capacitive multi-touch display. In: Proc. BCS-HCI 2012, pp. 315–320. British Computer Society (2012)Google Scholar
  34. 34.
    Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Rodenhouse, J., Wilson, A., Benko, H., Buxton, B.: Pen + touch = new tools. In: Proceedings of the ACM Symposium on User Interface Software and Technology, pp. 27–36 (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Rachel Blagojevic
    • 1
  • Beryl Plimmer
    • 1
  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations