Selection-Based Mid-Air Text Entry on Large Displays

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8117)


Most text entry methods require users to have physical devices within reach. In many contexts of use, such as around large displays where users need to move freely, device-dependent methods are ill suited. We explore how selection-based text entry methods may be adapted for use in mid-air. Initially, we analyze the design space for text entry in mid-air, focusing on single-character input with one hand. We propose three text entry methods: H4 Mid-Air (an adaptation of a game controller-based method by MacKenzie et al. [21]), MultiTap (a mid-air variant of a mobile phone text entry method), and Projected QWERTY (a mid-air variant of the QWERTY keyboard). After six sessions, participants reached an average of 13.2 words per minute (WPM) with the most successful method, Projected QWERTY. Users rated this method highest on satisfaction and it resulted in the least physical movement.


Text entry mid-air interaction techniques large high-resolution displays Huffman coding multitap 


  1. 1.
    Bailly, G., Vo, D.-B., Lecolinet, E., Guiard, Y.: Gesture-aware remote controls. In: Proc. ICMI 2011, pp. 263–270. ACM, New York (2010)Google Scholar
  2. 2.
    Bajer, B., MacKenzie, I.S., Baljko, M.: Huffman Base-4 Text Entry Glove (H4 TEG). In: Proc. ISWC 2012, pp. 41–47. IEEE (2012)Google Scholar
  3. 3.
    Ball, R., North, C., Bowman, D.A.: Move to Improve: Promoting Physical Navigation to Increase User Performance with Large Displays. In: Proc. CHI 2007, pp. 191–200. ACM, New York (2007)Google Scholar
  4. 4.
    Baudel, T., Beaudouin-Lafon, M.: Charade: remote control of objects using free-hand gestures. Communications of the ACM 36(7), 28–35 (1993)CrossRefGoogle Scholar
  5. 5.
    Baudisch, P., Cutrell, E., Robbins, D., et al.: Drag-and-Pop and Drag-and-Pick: Techniques for Accessing Remote Screen Content on Touch- and Pen-operated Systems. In: Proc. Interact 2003, pp. 57–64 (2003)Google Scholar
  6. 6.
    Benko, H.: Beyond flat surface computing: challenges of depth-aware and curved interfaces. In: Proc. MM 2009, pp. 935–944. ACM, New York (2009)Google Scholar
  7. 7.
    Bowman, D.A.: 3D user interfaces: theory and practice. Addison-Wesley (2005)Google Scholar
  8. 8.
    Butts, L., Cockburn, A.: An evaluation of mobile phone text input methods. In: Proc. AUIC 2002, vol. 7, pp. 55–59. IEEE, Los Alamitos (2002)Google Scholar
  9. 9.
    Castellucci, S.J., MacKenzie, I.S.: Unigest: text entry using three degrees of motion. In: Proc. CHI 2008, pp. 3549–3554. ACM, New York (2008)Google Scholar
  10. 10.
    Castellucci, S.J., MacKenzie, I.S.: Graffiti vs. unistrokes: an empirical comparison. In: Proc. CHI 2008, pp. 305–308. ACM, New York (2008)Google Scholar
  11. 11.
    Czerwinski, M., Smith, G., Regan, T., et al.: Toward characterizing the productivity benefits of very large displays. In: Proc. Interact 2003, pp. 17–24 (2003)Google Scholar
  12. 12.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)CrossRefGoogle Scholar
  13. 13.
    Douglas, S.A., Kirkpatrick, A.E., MacKenzie, I.S.: Testing pointing device performance and user assessment with the ISO 9241, Part 9 standard. In: Proc. CHI 1999, pp. 215–222. ACM, New York (1999)Google Scholar
  14. 14.
    Forlines, C., Vogel, D., Balakrishnan, R.: HybridPointing: fluid switching between absolute and relative pointing with a direct input device. In: Proc. UIST 2006, pp. 211–220. ACM, New York (2006)Google Scholar
  15. 15.
    Gustafson, S., Bierwirth, D., Baudisch, P.: Imaginary Interfaces: Spatial Interaction with Empty Hands and Without Visual Feedback. In: Proc. UIST 2010, pp. 3–12. ACM, New York (2010)Google Scholar
  16. 16.
    Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Garcia-Mendoza, A., Butz, A.: Interactions in the air: adding further depth to interactive tabletops. In: Proc. UIST 2009, pp. 139–148. ACM, New York (2009)Google Scholar
  17. 17.
    Hinckley, K., Wigdor, D.: The Human-Computer Interaction Handbook, pp. 95–132. CRC Press (2012)Google Scholar
  18. 18.
    Jones, E., Alexander, J., Andreou, A., Irani, P., Subramanian, S.: GesText: accelerometer-based gestural text-entry systems. In: Proc. CHI 2010, pp. 2173–2182. ACM, New York (2010)Google Scholar
  19. 19.
    Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N., Kurtenbach, G.: A remote control interface for large displays. In: Proc. UIST 2004, pp. 127–136. ACM, New York (2004)Google Scholar
  20. 20.
    Kristensson, P.O., Nicholson, T., Quigley, A.: Continuous recognition of one-handed and two-handed gestures using 3D full-body motion tracking sensors. In: IUI 2012, pp. 89–92. ACM, New York (2012)Google Scholar
  21. 21.
    MacKenzie, I.S., Soukoreff, R.W., Helga, J.: 1 thumb, 4 buttons, 20 words per minute: design and evaluation of H4-writer. In: Proc. UIST 2011, pp. 471–480. ACM, New York (2011)Google Scholar
  22. 22.
    MacKenzie, I.S., Soukoreff, R.W.: Text Entry for Mobile Computing: Models and Methods, Theory and Practice. Human–Computer Interaction 17(2), 147–198 (2002)CrossRefGoogle Scholar
  23. 23.
    MacKenzie, I.S., Soukoreff, R.W.: Phrase sets for evaluating text entry techniques. In: Proc. CHI 2003, pp. 754–755. ACM, New York (2003)Google Scholar
  24. 24.
    MacKenzie, I.S., Tanaka-Ishii, K.: Text Entry Systems: Mobility, Accessibility, Universality. Morgan Kaufman (2007)Google Scholar
  25. 25.
    MacLean, A., Young, R., Bellotti, V., Moran, T.P.: Questions, Options, and Criteria: Elements of Design Space Analysis. Human–Computer Interaction 6(3), 201–250 (1991)CrossRefGoogle Scholar
  26. 26.
    Makin, T.R., Holmes, N.P., Ehrsson, H.H.: On the other hand: dummy hands and peripersonal space. Behavioural Brain Research 191(1), 1–10 (2008)CrossRefGoogle Scholar
  27. 27.
    Nancel, M., Wagner, J., Pietriga, E., Chapuis, O., Mackay, W.: Mid-air pan-and-zoom on wall-sized displays. In: Proc. CHI 2011, pp. 177–186. ACM, New York (2011)Google Scholar
  28. 28.
    Ni, T., Bowman, D., North, C.: AirStroke: bringing unistroke text entry to freehand gesture interfaces. In: Proc. CHI 2011, pp. 2473–2476. ACM, New York (2011)Google Scholar
  29. 29.
    North, C., Dwyer, T., Lee, B., Fisher, D., Isenberg, P., Robertson, G., Inkpen, K.: Understanding Multi-touch Manipulation for Surface Computing. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 236–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Oulasvirta, A., Tamminen, S., Roto, V., Kuorelahti, J.: Interaction in 4-second bursts. In: Proc. CHI 2005, pp. 919–928. ACM, New York (2005)Google Scholar
  31. 31.
    Rico, J., Brewster, S.: Usable gestures for mobile interfaces: evaluating social acceptability. In: Proc. CHI 2010, pp. 887–896. ACM, New York (2010)Google Scholar
  32. 32.
    Sauro, J., Dumas, J.S.: Comparison of three one-question, post-task usability questionnaires. In: Proc. CHI 2009, pp. 887–896. ACM, New York (2009)Google Scholar
  33. 33.
    Shoemaker, G., Findlater, L., Dawson, J.Q., Booth, K.S.: Mid-air text input techniques for very large wall displays. In: Proc. GI 2009, pp. 231–238. Canadian Information Processing Society, Toronto (2009)Google Scholar
  34. 34.
    Soukoreff, R.W., MacKenzie, I.S.: Metrics for text entry research: an evaluation of MSD and KSPC, and a new unified. In: Proc. CHI 2003, pp. 113–120. ACM, New York (2003)Google Scholar
  35. 35.
    Vogel, D., Balakrishnan, R.: Distant freehand pointing and clicking on very large, high resolution displays. In: Proc. UIST 2005, pp. 33–42. ACM, New York (2005)Google Scholar
  36. 36.
    Wilson, A.D.: Robust computer vision-based detection of pinching for one and two-handed gesture input. In: Proc. UIST 2006, pp. 255–258. ACM, New York (2006)Google Scholar
  37. 37.
    Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proc. CHI 2009, pp. 1083–1092. ACM, New York (2009)Google Scholar
  38. 38.
    Wobbrock, J.O., Myers, B.A.: Analyzing the input stream for character- level errors in unconstrained text entry evaluations. TOCHI 13(4), 458–489 (2006)CrossRefGoogle Scholar
  39. 39.
    Zhai, S., Kristensson, P.-O., Smith, B.A.: In search of effective text input interfaces for off the desktop computing. Interacting with Computers 17(3), 229–250 (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations