Predictive Input Interface of Mathematical Formulas

  • Yoshinori Hijikata
  • Keisuke Horie
  • Shogo Nishida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8117)

Abstract

Currently, inputting mathematical formulas into a document using a PC requires more effort by users than inputting normal text. This fact inhibits the spreading of mathematical formulas as internet contents. We propose a method for predicting user’s inputs of mathematical formulas using an N-gram model: a popular probabilistic language model in natural language processing. Mathematical formulas are usually presented in hierarchical structure. Therefore, our method incorporates hierarchical information of mathematical formulas to create a prediction model. We try to achieve high prediction accuracy of inputting characters for mathematical formulas.

Keywords

mathematical input probabilistic language model predictive input N-gram model 

References

  1. 1.
    Copestake, A.: Augmented and alternative nlp techniques for augmentative and alternative communication. In: Proceedings of the ACL Workshop on Natural Language Processing for Communication Aids, pp. 37–42 (1997)Google Scholar
  2. 2.
    Darragh, J., Witten, H., James, L.: The reactive keyboard: A predictive typing aid. IEEE Computer 23, 41–49 (1990)CrossRefGoogle Scholar
  3. 3.
    Garay-Vitoria, N., Abascal, J.: Text prediction systems: A survey. Univers. Access Inf. Soc. 4(3), 188–203 (2006)CrossRefGoogle Scholar
  4. 4.
    Hashimoto, H., Hijikata, Y., Nishida, S.: Incorporating breadth first search for indexing mathml objects. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2008, pp. 3519–3523 (2008)Google Scholar
  5. 5.
    Hunnicutt, S.: Input and output alternative in word prediction. In: STL/QPRS, pp. 15–29 (1987)Google Scholar
  6. 6.
    King, M.T., Grover, D.L., Kushler, C.A., Grunbock, C.A.: Reduced keyboard disambiguating system patent (1998)Google Scholar
  7. 7.
    Kita, K.: Gengo to Keisan – Kakuritsuteki Gengo Model (Language and Computation - Probabilistic Language Model). University of Tokyo Press, Tokyo (1999)Google Scholar
  8. 8.
    LaViola Jr., J.J., Zeleznik, R.C.: Mathpad2: a system for the creation and exploration of mathematical sketches. ACM Trans. Graph. 23(3), 432–440 (2004)CrossRefGoogle Scholar
  9. 9.
    Mackenzie, I.S., Felzer, T.: Sak: Scanning ambiguous keyboard for efficient one-key text entry. ACM Trans. Comput.-Hum. Interact. 17(3), 11:1–11:39 (2010)CrossRefGoogle Scholar
  10. 10.
    Masui, T.: POBox: An efficient text input method for handheld and ubiquitous computers. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 289–300. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Miyake, T.: Introduction of Derivation and Integration. Baihukan, Tokyo, Japan (1992)Google Scholar
  12. 12.
    O’Connell, T., Li, C., Miller, T.S., Zeleznik, R.C., LaViola, J. J.J.: A usability evaluation of algosketch: a pen-based application for mathematics. In: Proceedings of the 6th Eurographics Symposium on Sketch-Based Interfaces and Modeling, SBIM 2009, pp. 149–157. ACM, New York (2009)CrossRefGoogle Scholar
  13. 13.
    Swiffin, A., Arnott, J., Pickering, J., Newell, A.: Adaptive and predictive techniques in a communication prosthesis. In: Augmentative Aleternative Communication, pp. 181–191 (1998)Google Scholar
  14. 14.
    Vertanen, K., Kristensson, P.O.: The imagination of crowds: conversational aac language modeling using crowdsourcing and large data sources. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, pp. 700–711. Association for Computational Linguistics, Stroudsburg (2011)Google Scholar
  15. 15.
    Wandmacher, T., Antoine, J.-Y., Poirier, F.: Sibylle: a system for alternative communication adapting to the context and its user. In: Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility, Assets 2007, pp. 203–210. ACM, New York (2007)Google Scholar
  16. 16.
    Zanibbi, R., Blostein, D.: Recognition and retrieval of mathematical expressions. International Journal on Document Analysis and Recognition (IJDAR), 1–27 (2011)Google Scholar
  17. 17.
    Zeleznik, R., Bragdon, A., Adeputra, F., Ko, H.-S.: Hands-on math: a page-based multi-touch and pen desktop for technical work and problem solving. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, UIST 2010, pp. 17–26. ACM, New York (2010)CrossRefGoogle Scholar
  18. 18.
    Zweig, G., Platt, J.C., Meek, C., Burges, C.J.C., Yessenalina, A., Liu, Q.: Computational approaches to sentence completion. In: ACL (1), pp. 601–610. The Association for Computer Linguistics (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Yoshinori Hijikata
    • 1
  • Keisuke Horie
    • 1
  • Shogo Nishida
    • 1
  1. 1.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations