Advertisement

Comparison of User Performance in Mixed 2D-3D Multi-Display Environments

  • Abhijit Karnik
  • Tovi Grossman
  • Sriram Subramanian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8117)

Abstract

Stereoscopic displays and volumetric 3D displays capable of delivering 3D views have in use for many years. These standalone displays have been investigated in detail for their impact on users’ viewing experiences. Effects like aesthenopia and nausea are well-known for flat-screen based stereoscopic displays. However, these devices have not been tested in the context of multi-display environments (MDEs). The performance cost of repetitive switching between a 3D (stereo or volumetric) display and a standard 2D display are not known. In this paper, we perform a thorough user study where we investigate the effects of using such 3D displays within the context of a MDE. We report on our findings and discuss the implications of the same on designs involving such hybrid setups. Our experiments show that in the condition involving two 2D displays which allow for motion parallax and perspective correction, the participants performed the task the fastest.

Keywords

stereoscopic display autostereoscopic display volumetric display zone of comfort multi-display environment performance mental load 

References

  1. 1.
    Aliakseyeu, D., Martens, J.-B., Sriram Subramanian, M., Vroubel, W.W.: Visual Interaction Platform. In: Proc. INTERACT 2001, pp. 232–239. IOS Press (2001)Google Scholar
  2. 2.
    Bailly, G., Nigay, L., Auber, D.: NAVRNA: visualization - exploration - editing of RNA. In: Proc. AVI 2006, pp. 504–507. ACM, New York (2006)Google Scholar
  3. 3.
    Berezin, O.: Digital cinema in Russia: Is 3D still a driver for the development of the cinema market. 3D Media 2010 (2010)Google Scholar
  4. 4.
    Bowman, D.A., North, C., Chen, J., Polys, N.F., Pyla, P.S., Yilmaz, U.: Information-rich virtual environments: theory, tools, and research agenda. In: Proc. VRST 2003, pp. 81–90. ACM, New York (2003)Google Scholar
  5. 5.
    Butler, A., Hilliges, O., Izadi, S., Hodges, S., Molyneaux, D., Kim, D., Kong, D.: Vermeer: direct interaction with a 360° viewable 3D display. In: Proc. UIST 2011, pp. 569–576. ACM, New York (2011)Google Scholar
  6. 6.
    Cossairt, O.S., Napoli, J., Hill, S.L., Dorval, R.K., Favalora, G.E.: Occlusion-capable multiview volumetric three-dimensional display. Appl. Opt. 46, 1244–1250 (2007)CrossRefGoogle Scholar
  7. 7.
    Czernuszenko, M., Pape, D., Sandin, D., DeFanti, T., Dawe, G.L., Brown, M.D.: The ImmersaDesk and Infinity Wall projection-based virtual reality displays. SIGGRAPH Comput. Graph. 31, 46–49 (1997)CrossRefGoogle Scholar
  8. 8.
    Ebert, D., Bedwell, E., Maher, S., Smoliar, L., Downing, E.: Realizing 3D visualization using crossed-beam volumetric displays. Commun. ACM 42, 100–107 (1999)CrossRefGoogle Scholar
  9. 9.
    Emoto, M., Niida, T., Okano, F.: Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. Display Technology 1, 328–340 (2005)CrossRefGoogle Scholar
  10. 10.
    Favalora, G.E.: Volumetric 3D Displays and Application Infrastructure. Computer 38, 37–44 (2005)CrossRefGoogle Scholar
  11. 11.
    Forlines, C., Esenther, A., Shen, C., Wigdor, D., Ryall, K.: Multi-user, multi-display interaction with a single-user, single-display geospatial application. In: Proc. UIST 2006, pp. 273–276. ACM, New York (2006)Google Scholar
  12. 12.
    Grossman, T., Balakrishnan, R.: The design and evaluation of selection techniques for 3D volumetric displays. In: Proc. UIST 2006, pp. 3–12. ACM, New York (2006)Google Scholar
  13. 13.
    Grossman, T., Balakrishnan, R.: An evaluation of depth perception on volumetric displays. In: Proc. AVI 2006, pp. 193–200. ACM, New York (2006)Google Scholar
  14. 14.
    Hachet, M., Bossavit, B., Cohé, A., Rivière, J.-B.D.L.: Toucheo: multitouch and stereo combined in a seamless workspace. In: Proc. UIST 2011, pp. 587–592. ACM, NY (2011)Google Scholar
  15. 15.
    Hancock, M., Nacenta, M., Gutwin, C., Carpendale, S.: The effects of changing projection geometry on the interpretation of 3D orientation on tabletops. In: Proc. ITS 2009, pp. 157–164. ACM, New York (2009)Google Scholar
  16. 16.
    Hilliges, O., Kim, D., Izadi, S., Weiss, M., Wilson, A.: HoloDesk: direct 3d interactions with a situated see-through display. In: Proc. CHI 2012, pp. 2421–2430. ACM, NY (2012)Google Scholar
  17. 17.
    Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Vision 8 (2008)Google Scholar
  18. 18.
    Jiang, H., Wigdor, D., Forlines, C., Borkin, M., Kauffmann, J., Shen, C.: LivOlay: interactive ad-hoc registration and overlapping of applications for collaborative visual exploration. In: Proc. CHI 2008, pp. 1357–1360. ACM (2008)Google Scholar
  19. 19.
    Jin, Z.X., Zhang, Y.J., Wang, X., Plocher, T.: Evaluating the Usability of an Auto-stereoscopic Display. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4551, pp. 605–614. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Johnston, E.B., Cumming, B.G., Landy, M.S.: Integration of stereopsis and motion shape cues. Vision Research 34, 2259–2275 (1994)CrossRefGoogle Scholar
  21. 21.
    Jones, A., McDowall, I., Yamada, H., Bolas, M., Debevec, P.: An interactive 360° light field display. In: Proc. SIGGRAPH 2007 ETech, p. 13. ACM, New York (2007)Google Scholar
  22. 22.
    Karnik, A., Mayol-Cuevas, W., Subramanian, S.: MUSTARD: a multi user see through AR display. In: Proc. CHI 2012, pp. 2541–2550. ACM, New York (2012)Google Scholar
  23. 23.
    Karnik, A., Plasencia, D.M., Mayol-Cuevas, W., Subramanian, S.: PiVOT: personalized view-overlays for tabletops. In: Proc. UIST 2012, pp. 271–280. ACM, New York (2012)Google Scholar
  24. 24.
    Kooi, F.L., Toet, A.: Visual comfort of binocular and 3D displays. Displays 25, 99–108 (2004)CrossRefGoogle Scholar
  25. 25.
    Langhans, K., Bahr, D., Bezecny, D., Homann, D., Oltmann, K., Oltmann, K., Guill, C., Rieper, E., Ardey, G.: FELIX 3D display: an interactive tool for volumetric imaging. In: Proc. Stereoscopic Displays and Virtual Reality Systems IX, pp. 176–190. SPIE (2002)Google Scholar
  26. 26.
    Lin, Q., Qiong-Hua, W., Jiang-Yong, L., Wu-Xiang, Z., Cheng-Qun, S.: An Autostereoscopic 3D Projection Display Based on a Lenticular Sheet and a Parallax Barrier. J. Display Technology 8, 397–400 (2012)CrossRefGoogle Scholar
  27. 27.
    Marshall, P., Rogers, Y., Hornecker, E.: Are tangible interfaces really any better than other kinds of interfaces? In: Proc. Tangible User Interfaces in Context and Theory Workshop, CHI 2007. ACM, New York (2007)Google Scholar
  28. 28.
    Matusik, W., Pfister, H.: 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans. Graph. 23, 814–824 (2004)CrossRefGoogle Scholar
  29. 29.
    Nacenta, M.A., Sakurai, S., Yamaguchi, T., Miki, Y., Itoh, Y., Kitamura, Y., Subramanian, S., Gutwin, C.: E-conic: a perspective-aware interface for multi-display environments. In: Proc. UIST 2007, pp. 279–288. ACM, New York (2007)Google Scholar
  30. 30.
    Nayar, S.K., Anand, V.N.: 3D Display Using Passive Optical Scatterers. Computer 40, 54–63 (2007)CrossRefGoogle Scholar
  31. 31.
    Oliveira, S., Jorge, J., González-Méijome, J.M.: Dynamic accommodative response to different visual stimuli (2D vs 3D) while watching television and while playing Nintendo 3DS Console. Ophthalmic and Physiological Optics 32, 383–389 (2012)CrossRefGoogle Scholar
  32. 32.
    Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W.M.: Cognitive Load Measurement as a Means to Advance Cognitive Load Theory. Educational Psychol. 38, 63–71 (2003)CrossRefGoogle Scholar
  33. 33.
    Perlin, K., Paxia, S., Kollin, J.S.: An autostereoscopic display. In: Proc. SIGGRAPH 2000, pp. 319–326. ACM, New York (2000)Google Scholar
  34. 34.
    Price, A., Lee, H.-S.: The Effect of Two-dimensional and Stereoscopic Presentation on Middle School Students’ Performance of Spatial Cognition Tasks. J. Sci. Educ. Technol. 19, 90–103 (2010)CrossRefGoogle Scholar
  35. 35.
    Shepard, R.N., Metzler, J.: Mental Rotation of Three-Dimensional Objects. Science 171, 701–703 (1971)CrossRefGoogle Scholar
  36. 36.
    Shibata, T., Kim, J., Hoffman, D.M., Banks, M.S.: The zone of comfort: Predicting visual discomfort with stereo displays. Vision 11 (2011)Google Scholar
  37. 37.
    John, M., Cowen, M.B., Smallman, H.S., Oonk, H.M.: The Use of 2D and 3D Displays for Shape-Understanding versus Relative-Position Tasks. Human Factors 43, 79–98 (2001)CrossRefGoogle Scholar
  38. 38.
    Sullivan, A.: DepthCube solid-state 3D volumetric display. In: Proc. Stereoscopic Displays and Virtual Reality Systems XI, pp. 279–284. SPIE (2004)Google Scholar
  39. 39.
    Tam, W.J., Speranza, F., Yano, S., Shimono, K., Ono, H.: Stereoscopic 3D-TV: Visual Comfort. IEEE Trans. Broadcasting 57, 335–346 (2011)CrossRefGoogle Scholar
  40. 40.
    Wigdor, D., Jiang, H., Forlines, C., Borkin, M., Shen, C.: WeSpace: the design development and deployment of a walk-up and share multi-surface visual collaboration system. In: Proc. CHI 2009, pp. 1237–1246. ACM, New York (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Abhijit Karnik
    • 1
  • Tovi Grossman
    • 2
  • Sriram Subramanian
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK
  2. 2.Autodesk ResearchTorontoCanada

Personalised recommendations