Assessing the Impact of Automatic vs. Controlled Rotations on Spatial Transfer with a Joystick and a Walking Interface in VR

  • Florian Larrue
  • Hélène Sauzéon
  • Déborah Foloppe
  • Grégory Wallet
  • Jean-René Cazalets
  • Christian Gross
  • Martin Hachet
  • Bernard N’Kaoua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8117)


We present a user study assessing spatial transfer in a 3D navigation task, with two different motor activities: a minimal (joystick) and an extensive motor activity (walking Interface), with rotations of the viewpoint either controlled by the user, or automatically managed by the system. The task consisted in learning a virtual path of a 3D model of a real city, with either one of these four conditions: Joystick / Treadmill Vs Manual Rotation / Automatic Rotation. We assessed spatial knowledge with six spatial restitution tasks. To assess the interfaces used, we analyzed also the interaction data acquired during the learning path. Our results show that the direct control of rotations has different effects, depending on the motor activity required by the input modality. The quality of spatial representation increases with the Treadmill when rotations are enabled. With the Joystick, controlling the rotations affect spatial representations. We discuss our findings in terms of cognitive, sensorimotor processes and human computer interaction issues.


Interfaces Navigation Virtual Reality Spatial Cognition Joystick Treadmill Rotation Body-based Information Vestibular Information Human Machine Interaction Human Factors User Study Motor Activity 


  1. 1.
    Wallet, G., Sauzeon, H., Rodrigues, J., Larrue, F., N’Kaoua, B.: Virtual / Real Transfer of Spatial Learning: Impact of Activity According to the Retention Delay. St. Heal. (2010)Google Scholar
  2. 2.
    Wallet, G., Sauzeon, H., Pala, P.A., Larrue, F., Zheng, X., N’Kaoua, B.: Virtual/Real transfer of spatial knowledge: benefit from visual fidelity provided in a virtual environment and impact of active navigation. Cyberpsychology, Behavior and Social Networking 14(7-8), 417–423 (2011)CrossRefGoogle Scholar
  3. 3.
    Larrue, F., Sauzeon, H., Aguilova, L., Lotte, F., Hachet, M., N’Kaoua, B.: Brain Computer Interface Vs Walking Interface in VR: The impact of motor activity on spatial transfer. In: Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology (VRST 2012), pp. 113–120. ACM, New York (2012)CrossRefGoogle Scholar
  4. 4.
    Guilford, J.P., Zimmerman, W.S.: The Guilford-Zimmerman Aptitude Survey. Journal of Applied Psychology (1948)Google Scholar
  5. 5.
    Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills 47(2), 599–604 (1978)CrossRefGoogle Scholar
  6. 6.
    Wechsler, D.: Manual for the Wechsler Adult Intelligence Scale-Revised. Psychological Corporation, New York (1981)Google Scholar
  7. 7.
    Kennedy, R., Lane, N., Berbaum, K., Lilienthal, M.: Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology 3(3), 203–220 (1993)CrossRefGoogle Scholar
  8. 8.
    Waller, D., Hunt, E., Knapp, D.: The Transfer of Spatial Knowledge in Virtual Environment Training. Presence: Teleoperators and Virtual Environments 7(2), 129–143 (1998)CrossRefGoogle Scholar
  9. 9.
    Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. Advances in Child Development and Behavior 10, 9–55 (1975)CrossRefGoogle Scholar
  10. 10.
    Ruddle, R.A., Volkova, E., Mohler, B., Bülthoff, H.H.: The effect of landmark and body-based sensory information on route knowledge. Memory & Cognition 39(4) (2011)Google Scholar
  11. 11.
    Waller, D., Richardson, A.R.: Correcting distance estimates by interacting with immersive virtual environments: effects of task and available sensory information. Journal of Experimental Psychology: Applied 14(1), 61–72 (2008)CrossRefGoogle Scholar
  12. 12.
    Klatzky, R.L., Loomis, J.M., Beall, A.C., Chance, S.S., Golledge, R.G.: Spatial Updating of Self-Position and Orientation During Real, Imagined, and Virtual Locomotion. Psychological Science 9(4), 293–298 (1998)CrossRefGoogle Scholar
  13. 13.
    Chance, S.S., Gaunet, F., Beall, A.C., Loomis, J.M.: Locomotion Mode Affects the Updating of Objects Encountered During Travel: The Contribution of Vestibular and Proprioceptive Inputs to Path Integration. Presence: Teleoperators and Virtual Environments 7(2), 168–178 (1998)CrossRefGoogle Scholar
  14. 14.
    Ruddle, R.A., Volkova, E., Bülthoff, H.H.: Walking improves your cognitive map in environments that are large-scale and large in extent. ACM Transactions on Computer-Human Interaction 18(2), 1–20 (2011)CrossRefGoogle Scholar
  15. 15.
    Riecke, B.E., Cunningham, D.W., Bülthoff, H.H.: Spatial updating in virtual reality: the sufficiency of visual information. Psychol. Res. 71(3), 298–313 (2007)CrossRefGoogle Scholar
  16. 16.
    Richardson, A.E., Powers, M.E., Bousquet, L.G.: Video game experience predicts virtual, but not real navigation performance. Computers in Human Behavior 27(1) (2011)Google Scholar
  17. 17.
    Ruddle, R.A., Lessels, S.: The benefits of using a walking interface to navigate virtual environments. ACM Transactions on Computer-Human Interaction 16(1), 1–18 (2009)CrossRefGoogle Scholar
  18. 18.
    Golledge, R.G.: Human wayfinding and cognitive maps. In: Wayfinding Behavior, pp. 5–45. The John Hopkins University Press, Baltimore (1999)Google Scholar
  19. 19.
    Grant, S.C., Magee, L.E.: Contributions of Proprioception to Navigation in Virtual Environments. Human Factors: The Journal of the Human Factors and Ergonomics Society 40(3), 489–497 (1998)CrossRefGoogle Scholar
  20. 20.
    Ruddle, R.A., Péruch, P.: Effects of proprioceptive feedback and environmental characteristics on spatial learning in virtual environments. International Journal of Human-Computer Studies 60(3), 299–306 (2004)CrossRefGoogle Scholar
  21. 21.
    Péruch, P., Vercher, J., Gauthier, G.M.: Acquisition of Spatial Knowledge Through Visual Exploration of Simulated Environments. Ecological Psychology 7(1), 1 (1995)CrossRefGoogle Scholar
  22. 22.
    Wilson, P., Foreman, N., Gillett, R., Stanton, D.: Active Versus Passive Processing of Spatial Information in a Computer-Simulated Environment. Ecological Psychology (1997)Google Scholar
  23. 23.
    Wilson, P.N.: Active Exploration of a Virtual Environment Does Not Promote Orientation or Memory for Objects. Environment and Behavior 31(6), 752–763 (1999)CrossRefGoogle Scholar
  24. 24.
    Wilson, P.N., Péruch, P.: The influence of interactivity and attention on spatial learning in a desktop virtual environment. Current Psychology of Cognition 21, 601–633 (2002)Google Scholar
  25. 25.
    Rizzo, A., Schultheis, M., Kerns, K., Mateer, C.: Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation 14(1), 207–239 (2004)CrossRefGoogle Scholar
  26. 26.
    Skelton, R.W., Bukach, C.M., Laurance, H.E., Thomas, K.G., Jacobs, J.W.: Humans with traumatic brain injuries show place-learning deficits in computer-generated virtual space. Journal of Clinical and Experimental Neuropsychology 22(2), 157–175 (2000)CrossRefGoogle Scholar
  27. 27.
    Lloyd, J., Powell, T.E., Smith, J., Persaud, N.V.: Use of a virtual-reality town for examining route-memory, and techniques for its rehabilitation in people with acquired brain injury. In: Proceedings of the 6th International Disability, Virtual Reality and Associated Technologies, Esbjerg, pp. 175–182 (2006)Google Scholar
  28. 28.
    Montello, D.R.: Navigation. In: Shah, P., Miyake, A. (eds.) The Cambridge Handbook of Visuospatial Thinking, pp. 257–294. Cambridge University, Cambridge (2005)CrossRefGoogle Scholar
  29. 29.
    Ishikawa, T., Montello, D.R.: Spatial knowledge acquisition from direct experience in the environment: individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology 52(2), 93–129 (2006)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Florian Larrue
    • 1
    • 2
  • Hélène Sauzéon
    • 2
    • 1
  • Déborah Foloppe
    • 3
  • Grégory Wallet
    • 4
  • Jean-René Cazalets
    • 5
  • Christian Gross
    • 6
  • Martin Hachet
    • 1
  • Bernard N’Kaoua
    • 1
    • 2
  1. 1.INRIATalenceFrance
  2. 2.EA 4136, Handicap & Système NerveuxUniversity of Bordeaux Victor SegalenBordeaux CedexFrance
  3. 3.LPPL - (UPRES EA 4638)LUNAM Université - Université d’AngersFrance
  4. 4.CNRS, ISM UMR 7287Aix-Marseille UniversitéMarseille Cedex 09France
  5. 5.CNRS UMR 5287INCIA - Institut de Neurosciences Cognitives et Intégratives d’AquitaineBordeaux CedexFrance
  6. 6.Institut des Maladies Neurodégénératives, CNRS UMR 5293University of Bordeaux Victor SegalenBordeaux CedexFrance

Personalised recommendations