Model Assisted Creativity Sessions for the Design of Mixed Interactive Systems: A Protocol Analysis

  • Christophe Bortolaso
  • Emmanuel Dubois
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8119)


To help designers face the complexity of mixed interaction and identifying original and adapted solutions, we developed and evaluated an original approach to interaction design. This approach, called Model Assisted Creativity Sessions (MACS), aims to combine the best elements of both a model of mixed interaction, and a collaborative and creative session. The objective is twofold: to support the exploration of the design space, and to establish a common language between participants. To assess the viability of this approach, we relied on a protocol analysis of the verbal recordings of two existing design situations. Results show that the model impacts the generation of ideas and that participants use the model concepts to share their thoughts during the session.


Design Method Mixed Interaction Model Creativity 


  1. 1.
    Altshuller, G.: Innovation Algorithm: TRIZ, systematic innovation and technical creativity. Technical Innovation Ctr. Retrieved from, p. 312 (1999)Google Scholar
  2. 2.
    Amabile, T.M.: Creativity in context. Boulder, p. xviii, 317. Westview Press (1996)Google Scholar
  3. 3.
    Blackwell, A., Green, T.R.G.: Notational Systems - the Cognitive Dimensions of Notations framework. In: John, M.C. (ed.) HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Science (2002)Google Scholar
  4. 4.
    Bonnardel, N.: Towards understanding and supporting creativity in design: analogies in a constrained cognitive environment. Knowledge-Based Systems 13(7-8), 505–513 (2000)CrossRefGoogle Scholar
  5. 5.
    Bortolaso, C., Bach, C., Dubois, E.: MACS: combination of a formal mixed interaction model with an informal creative session. In: EICS 2011, Pisa, Italy, pp. 63–72. ACM, New York (2011a)Google Scholar
  6. 6.
    Bortolaso, C., Bach, C., Dubois, E.: Co-Design of Interactive Museographic Exhibits: the MIME case study. In: ReThinking Technology in Museums, pp. 37–48. University of Limerick, Limerick (2011b)Google Scholar
  7. 7.
    Bresciani, S., Blackwell, A., Eppler, M.: A Collaborative Dimensions Framework: Understanding the Mediating Role of Conceptual Visualizations in Collaborative Knowledge Work. In: Hawaii International Conference on System Sciences, p. 364. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  8. 8.
    Costello, F.J., Keane, M.T.: Efficient Creativity: Constraint-Guided Conceptual Combination. Cognitive Science 24, 299–349 (2000)CrossRefGoogle Scholar
  9. 9.
    Coutrix, C., Nigay, L.: Balancing physical and digital properties in mixed objects. In: AVI 2008, Napoli, Italy, pp. 305–308. ACM, NY (2008)Google Scholar
  10. 10.
    Darses, F., Détienne, F., Falzon, P., Visser, W.: A Method for Analysing Collective Design Processes. In: ECCE 2010, Linköping, Sweden (2010)Google Scholar
  11. 11.
    Dubois, E., Gray, P.: A Design-Oriented Information-Flow Refinement of the ASUR Interaction Model. In: Gulliksen, J., Harning, M.B., van der Veer, G.C., Wesson, J. (eds.) EIS 2007. LNCS, vol. 4940, pp. 465–482. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI Magazine 11(4), 26 (1990)CrossRefGoogle Scholar
  13. 13.
    Gero, J.S., Mc Neill, T.: An approach to the analysis of design protocols. Design Studies 19(1), 21–61 (1998)CrossRefGoogle Scholar
  14. 14.
    Graham, N., Dubois, E., Bortolaso, C., Wolfe, C.: Scenarchitectures: The Use of Domain-Specific Architectures to Bridge Design and Implementation. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part II. LNCS, vol. 6947, pp. 341–358. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Harrison, C., Benko, H., Wilson, A.D.: OmniTouch: wearable multitouch interaction everywhere. In: UIST 2011, p. 441. ACM Press, New York (2011)Google Scholar
  16. 16.
    Hatchuel, A., Weil, B.: C-K design theory: an advanced formulation. Research in Engineering Design 19(4), 181–192 (2008)CrossRefGoogle Scholar
  17. 17.
    Hornecker, E.: Creative idea exploration within the structure of a guiding framework: the card brainstorming game. In: TEI 2010, pp. 101–108. ACM Press (2010)Google Scholar
  18. 18.
    Hornecker, E., Buur, J.: Getting a grip on tangible interaction: a framework on physical space and social interaction. In: CHI 2006, pp. 437–446. ACM, Montréal (2006)Google Scholar
  19. 19.
    Jacob, R.J.K., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., Zigelbaum, J.: Reality-based interaction: a framework for post-WIMP interfaces. In: CHI 2008, p. 201. ACM Press (2008)Google Scholar
  20. 20.
    Jordà, S., Geiger, G., Alonso, M., Kaltenbrunner, M.: The reacTable: exploring the synergy between live music performance and tabletop tangible interfaces. In: TEI 2007, pp. 139–146. ACM (2007)Google Scholar
  21. 21.
    Koleva, B., Egglestone, S.R., Schnädelbach, H., Glover, K., Greenhalgh, C., Rodden, T., Dade-Robertson, M.: Supporting the creation of hybrid museum experiences. In: CHI 2009, p. 1973. ACM Press, New York (2009)Google Scholar
  22. 22.
    Löwgren, J., Stolterman, E.: Thoughtful interaction design. MIT Press, Cambridge (2004)Google Scholar
  23. 23.
    Monk, A., Howard, S.: Methods & tools: the rich picture: a tool for reasoning about work context. Interactions 5(2), 21–30 (1998)CrossRefGoogle Scholar
  24. 24.
    Muller, M.J.: PICTIVE - an exploration in participatory design. In: CHI 1991, pp. 225–231. ACM, New Orleans (1991)Google Scholar
  25. 25.
    Schön, D.A.: The Reflective Practitioner: How Professionals Think In Action, 1st edn., pp. 305–308. Basic Books (2008)Google Scholar
  26. 26.
    Shaer, O., Jacob, R.J.K.: A specification paradigm for the design and implementation of tangible user interfaces. TOCHI 16(4), 1–39 (2009)Google Scholar
  27. 27.
    Simon, H.A.: Les Sciences de l’Artificiel, 3ème edn., p. 215. Folio (1969)Google Scholar
  28. 28.
    Stolterman, E., Wiberg, M.: Concept-Driven Interaction Design Research. Human-Computer Interaction 25(2), 95–118 (2010)CrossRefGoogle Scholar
  29. 29.
    Ullmer, B., Ishii, H., Jacob, R.J.K.: Token+constraint systems for tangible interaction with digital information. TOCHI 12(1), 81–118 (2005)CrossRefGoogle Scholar
  30. 30.
    Visser, W.: Designing as construction of representations: a dynamic viewpoint in cognitive design research. Human Computer Interaction 21(1), 103–152 (2006)CrossRefGoogle Scholar
  31. 31.
    Youn-kyung, L., Sang-Su, L., Da-jung, K., Lim, Y., Lee, S.-S., Kim, D.: Interactivity Attributes for Expression-oriented Interaction Design. IJDesign 5(3), 113–128 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christophe Bortolaso
    • 1
  • Emmanuel Dubois
    • 2
  1. 1.School of ComputingQueen’s UniversityKingstonCanada
  2. 2.IRIT - ELIPSEUniversity of ToulouseToulouseFrance

Personalised recommendations