The Impact of Encumbrance on Mobile Interactions

  • Alexander Ng
  • Stephen A. Brewster
  • John Williamson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8119)


This paper investigates the effects of encumbrance (holding different types of objects while using mobile devices) to understand the interaction difficulties that it causes. An experiment was conducted where participants performed a target acquisition task on a touchscreen mobile phone while carrying different types of bags and boxes. Mobility was also evaluated since people carry items from one place to another. Motion capture hardware was used to track hand and arm postures to examine how holding the different types of objects caused excessive movement and instability therefore resulting in performance to decline. The results showed encumbrance and mobility caused target accuracy to decrease although input while holding the box under the non-dominant arm was more accurate and exerted quicker targeting times than holding no objects. Encumbrance affected the dominant hand more than the non-dominant hand as targeting error significantly increased and caused greater hand instability. The issues caused by encumbrance suggest the topic requires more attention from researchers and users would benefit greatly if better interaction techniques and applications are developed to counteract the problems.


Encumbrance Mobility Mobile interactions Target acquisition 


  1. 1.
    Brewster, S.A.: Overcoming the lack of screen space on mobile computer. Personal and Ubiquitous Computing 6, 188–205 (2002)CrossRefGoogle Scholar
  2. 2.
    Bergstrom-Lehtovirta, J., Oulasvirta, A., Brewster, S.: The Effects of Walking Speed on Target Acquisition on a Touchscreen Interface. In: Proc. MobileHCI 2011, pp. 143–146. ACM Press (2011)Google Scholar
  3. 3.
    Goel, M., FindLater, L., Wobbrock, J.: WalkType: using accelerometer data to accommodate situational impairments in mobile touchscreen text entry. In: Proc. CHI 2012, pp. 2687–2696. ACM Press (2012)Google Scholar
  4. 4.
    Kane, S.K., Wobbrock, J.O., Smith, I.E.: Getting off the treadmill: evaluating walking user interfaces for mobile devices in public spaces. In: Proc. MobileHCI 2008, pp. 109–118. ACM Press (2008)Google Scholar
  5. 5.
    Knoblauch, R., Pietrucha, M., Nitzburg, M.: Transportation research Record 1538(-1), 27–38 (1996)CrossRefGoogle Scholar
  6. 6.
    Lajoie, Y., Teasdale, N., Bard, C., Fleury, M.: Attentional demands for static and dynamic equilibrium. Experimental Brain Research 97(1), 139–144 (1993)CrossRefGoogle Scholar
  7. 7.
    Lin, M., Goldman, R., Price, K.J., Sears, A., Jacko, J.: How do people tap when walking? An empirical investigation of nomadic data entry. Intl. J. of Human Computer Studies 65(9), 759–769 (2007)CrossRefGoogle Scholar
  8. 8.
    Mainwaring, S., Anderson, K., Chang, M.: Living for the global city: mobile kits, urban interfaces, and ubicomp. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 269–286. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Mizobuchi, S., Chignell, M., Newton, D.: Mobile text entry: relationship between walking speed and text input task difficulty. In: Proc. MobileHCI 2005, pp. 122–128. ACM Press (2005)Google Scholar
  10. 10.
    Ng, A., Brewster, S., Crossan, A.: The Effects of Encumbrance on Mobile Gesture Interactions. In: Proc. of Body, Movement, Gestures & Tactility in Interaction with Mobile Devices, Workshop at MobileHCI 2011, Stockholm, Sweden (2011)Google Scholar
  11. 11.
    Nicolau, H., Jorge, J.: Touch typing using thumbs: und understanding the effect of mobility and hand posture. In: Proc. CHI 2012, pp. 2683–2686. ACM Press (2012)Google Scholar
  12. 12.
    Oulasvirta, A., Tamminen, S., Roto, V., Kuorelahti, J.: Interaction in 4-second bursts: the fragmented nature of attentional resources in mobile HCI. In: Proc. CHI 2005, pp. 919–928. ACM Press (2005)Google Scholar
  13. 13.
    Oulasvirta, A., Bergstrom-Lehtovirta, J.: Ease of juggling: studying the effects of manual multitasking. In: Proc. CHI 2011, pp. 3103–3112. ACM Press (2011)Google Scholar
  14. 14.
    Pellecchia, G.: Postural sway increases with attentional demands of concurrent cognitive task. Gait Posture 18(1), 29–34 (2003)CrossRefGoogle Scholar
  15. 15.
    Schildbach, B., Rukzio, E.: Investigating selection and reading performance on a mobile phone while walking. In: Proc. MobileHCI 2010, pp. 93–102. ACM Press (2010)Google Scholar
  16. 16.
    Tamminen, S., Oulasvirta, A., Toiskallio, K., Kankainen, A.: Understanding mobile contexts. Personal Ubiquitous Computing 8, 135–143 (2004)CrossRefGoogle Scholar
  17. 17.
    Wolf, K.: Microinteractions beside ongoing manual tasks. In: Proc. TEI 2011, pp. 447–448. ACM Press (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Ng
    • 1
  • Stephen A. Brewster
    • 1
  • John Williamson
    • 1
  1. 1.School of Computing ScienceUniversity of GlasgowGlasgowUnited Kingdom

Personalised recommendations