Advertisement

Modeless Pointing with Low-Precision Wrist Movements

  • Theophanis Tsandilas
  • Emmanuel Dubois
  • Mathieu Raynal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8119)

Abstract

Wrist movements are physically constrained and take place within a small range around the hand’s rest position. We explore pointing techniques that deal with the physical constraints of the wrist and extend the range of its input without making use of explicit mode-switching mechanisms. Taking into account elastic properties of the human joints, we investigate designs based on rate control. In addition to pure rate control, we examine a hybrid technique that combines position and rate-control and a technique that applies non-uniform position-control mappings. Our experimental results suggest that rate control is particularly effective under low-precision input and long target distances. Hybrid and non-uniform position-control mappings, on the other hand, result in higher precision and become more effective as input precision increases.

Keywords

Pointing techniques constrained wrist movement elastic devices rate control clutching 

References

  1. 1.
    Appert, C., Chapuis, O., Pietriga, E.: High-Precision Magnification Lenses. In: Proc. ACM CHI, pp. 273–282 (2010)Google Scholar
  2. 2.
    Bérard, F., Wang, G., Cooperstock, J.R.: On the Limits of the Human Motor Control Precision: The Search for a Device’s Human Resolution. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part II. LNCS, vol. 6947, pp. 107–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bowman, D.A., Hodges, L.F.: An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments. In: Proc. Symposium on Interactive 3D Graphics, pp. 35–38 (1997)Google Scholar
  4. 4.
    Cao, X., Li, J.J., Balakrishnan, R.: Peephole Pointing: Modeling Acquisition of Dynamically Revealed Targets. In: Proc. ACM CHI, pp. 1699–1708 (2008)Google Scholar
  5. 5.
    Casiez, G., Vogel, D.: The Effect of Spring Stiffness and Control Gain with an Elastic Rate Control Pointing Device. In: Proc. ACM CHI, pp. 1709–1718 (2008)Google Scholar
  6. 6.
    Casiez, G., Vogel, D., Balakrishnan, R., Cockburn, A.: The Impact of Control-Display Gain on User Performance in Pointing Tasks. In: Human-Computer Interaction, 2008, vol. 23(3), pp. 215–250 (2008)Google Scholar
  7. 7.
    Casiez, G., Vogel, D., Pan, Q., Chaillou, C.: RubberEdge: Reducing Clutching by Combining Position and Rate Control with Elastic Feedback. In: Proc. ACM CHI, pp. 129–138 (2007)Google Scholar
  8. 8.
    Chapuis, O., Dragicevic, P.: Effects of Motor Scale, Visual Scale and Quantization on Small Target Acquisition Difficulty. In: ACM ToCHI, 2011, vol. 18(3), pp. 13:1–13:32 (2011)Google Scholar
  9. 9.
    Dominjon, L., Lécuyer, A., Burkhardt, J.-M., Richir, S.: A Comparison of Three Techniques to Interact in Large Virtual Environments Using Haptic Devices with Limited Workspace. In: Nishita, T., Peng, Q., Seidel, H.-P. (eds.) CGI 2006. LNCS, vol. 4035, pp. 288–299. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Frees, S., Kessler, G.D., Kay, E.: Prism Interaction for Enhancing Control in Immersive Virtual Environments. In: ACM TOCHI, vol. 14(1) (2007)Google Scholar
  11. 11.
    Gibbs, C.B.: Controller Design: Interactions of Controlling Limbs, Time-Lags and Gain in Positional and Velocity Systems. Ergonomics 5(2), 385–402 (1962)CrossRefGoogle Scholar
  12. 12.
    Guiard, Y., Beaudouin-Lafon, M., Mottet, D.: Navigation as Multiscale Pointing: Extending Fitts’ Model to Very High Precision Tasks. In: Proc. ACM CHI, pp. 450–457 (1999)Google Scholar
  13. 13.
    Hinckley, K., Pausch, R., Goblel, J.C., Kassell, N.: A Survey of Design Issues in Spatial Input. In: Proc. ACM UIST, pp. 213–222 (1994)Google Scholar
  14. 14.
    König, W.A., Gerken, J., Dierdorf, S., Reiterer, H.: Adaptive Pointing - Design and Evaluation of a Precision Enhancing Technique for Absolute Pointing Devices. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5726, pp. 658–671. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Lehman, S.L., Calhoun, B.M.: An Identified Model for Human Wrist Movements. Experimental Brain Research 81(1), 199–208 (1990)CrossRefGoogle Scholar
  16. 16.
    Lemay, M.A., Crago, P.E.: A Dynamic Model for Simulating Movements of the Elbow, Forearm, and Wrist. Journal of Biomechanics 29(10), 1319–1330 (1996)CrossRefGoogle Scholar
  17. 17.
    Maury, S., Athènes, S., Chatty, S.: Rhythmic Menus: Toward Interaction Based on Rhythm. In: Proc. ACM CHI, Extended Absracts, pp. 254–255 (1999)Google Scholar
  18. 18.
    Myers, B.A., Bhatnagar, R., Nichols, J., Peck, C.H., Kong, D., Miller, R., Long, A.C.: Interacting at a Distance: Measuring the Performance of Laser Pointers and Other Devices. In: Proc. ACM CHI, pp. 33–40 (2002)Google Scholar
  19. 19.
    Oh, J.-Y., Stuerzlinger, W.: Laser Pointers as Collaborative Pointing Devices. In: Proc. Graphics Interface, pp. 141–149 (2002)Google Scholar
  20. 20.
    Poupyrev, I., Billinghurst, M., Weghorst, S., Ichikawa, T.: The Go-Go Interaction Technique: Non-Linear Mapping for Direct Manipulation in VR. In: Proc. ACM UIST, pp. 79–80 (1996)Google Scholar
  21. 21.
    Rahman, M., Gustafson, S., Irani, P., Subramanian, S.: Tilt Techniques: Investigating the Dexterity of Wrist-Based Input. In: Proc. ACM CHI, pp. 1943–1952 (2009)Google Scholar
  22. 22.
    Raynal, M., Gauffre, G., Bach, C., Schmitt, B., Dubois, E.: Tactile Camera Vs. Tangible Camera: Taking Advantage of Small Physical Artefacts to Navigate into Large Data Collections. In: Proc. NordiCHI, pp. 373–382. ACM Press (2010)Google Scholar
  23. 23.
    Vogel, D., Balakrishnan, R.: Distant Freehand Pointing and Clicking on Very Large, High Resolution Displays. In: Proc. ACM CHI, pp. 33–42 (2005)Google Scholar
  24. 24.
    Zhai, S.: Human Performance in Six Degree of Freedom Input Control, Ph.D. Dissertation, University of Toronto (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Theophanis Tsandilas
    • 2
    • 3
  • Emmanuel Dubois
    • 1
  • Mathieu Raynal
    • 1
  1. 1.IRIT – ElipseUniversity of ToulouseToulouseFrance
  2. 2.INRIAOrsayFrance
  3. 3.Univ Paris-Sud (LRI) & CNRSOrsayFrance

Personalised recommendations