Advertisement

Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle

  • Mostafa Herajy
  • Martin Schwarick
  • Monika Heiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8100)

Abstract

System level understanding of the repetitive cycle of cell growth and division is crucial for disclosing many unknown principles of biological organisms. The deterministic or stochastic approach – when deployed separately – are not sufficient to study such cell regulation due to the complexity of the reaction network and the existence of reactions at different time scales. Thus, an integration of both approaches is advisable to study such biochemical networks. In this paper we show how Generalised Hybrid Petri Nets can be used to intuitively represent and simulate the eukaryotic cell cycle. Our model captures intrinsic as well as extrinsic noise and deploys stochastic as well as deterministic reactions. Additionally, marking-dependent arc weights are biologically motivated and introduced to Snoopy – a tool for animating and simulating Petri nets in various paradigms.

Keywords

Generalised hybrid Petri nets hybrid modelling eukaryotic cell cycle Snoopy marking-dependent arc weight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, K., Calzone, L., Csikasz-Nagy, A., Cross, F., Novak, B., Tyson, J.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cel. 5(8), 3841–3862 (2004)CrossRefGoogle Scholar
  2. 2.
    Fujita, S., Matsui, M., Matsuno, H., Miyano, S.: Modeling and simulation of fission yeast cell cycle on hybrid functional Petri net. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E87-A(11), 2919–2927 (2004)Google Scholar
  3. 3.
    Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gillespie, D.: Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry 58(1), 35–55 (2007)CrossRefGoogle Scholar
  6. 6.
    Haseltine, E., Rawlings, J.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)CrossRefGoogle Scholar
  7. 7.
    Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Heiner, M., Lehrack, S., Gilbert, D., Marwan, W.: Extended stochastic Petri nets for model-based design of wetlab experiments. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 138–163. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks. Nonlinear Analysis: Hybrid Systems 6(4), 942–959 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Herajy, M.: Computational Steering of Multi-Scale Biochemical Reaction Networks. Ph.D. thesis, Brandenburg University of Technology Cottbus - Computer Science Institute (2013)Google Scholar
  12. 12.
    Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks through generalised hybrid Petri nets. Tech. Rep. 02/2011, Brandenburg University of Technology Cottbus, Dept. of CS (2011)Google Scholar
  13. 13.
    Kar, S., Baumann, W.T., Paul, M.R., Tyson, J.J.: Exploring the roles of noise in the eukaryotic cell cycle. Proceedings of the National Academy of Sciences of the United States of America 106(16), 6471–6476 (2009)CrossRefGoogle Scholar
  14. 14.
    Kiehl, T., Mattheyses, R., Simmons, M.: Hybrid simulation of cellular behavior. Bioinformatics 20, 316–322 (2004)CrossRefGoogle Scholar
  15. 15.
    Liu, Z., Pu, Y., Li, F., Shaffer, C., Hoops, S., Tyson, J., Cao, Y.: Hybrid modeling and simulation of stochastic effects on progression through the eukaryotic cell cycle. J. Chem. Phys. 136(34105) (2012)Google Scholar
  16. 16.
    Marwan, W., Rohr, C., Heiner, M.: Petri nets in Snoopy: A unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. Methods in Molecular Biology, ch. 21, vol. 804, pp. 409–437. Humana Press (2012)Google Scholar
  17. 17.
    Matsui, M., Fujita, S., Suzuki, S., Matsuno, H., Miyano, S.: Simulated cell division processes of the xenopus cell cycle pathway by genomic object net. Journal of Integrative Bioinformatics, 0001 (2004)Google Scholar
  18. 18.
    Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional Petri net. Silico Biology 3(3) (2003)Google Scholar
  19. 19.
    Mura, I., Csikász-Nagy, A.: Stochastic Petri net extension of a yeast cell cycle model. Journal of Theoretical Biology 254(4), 850–860 (2008)CrossRefGoogle Scholar
  20. 20.
    Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., Tyson, J.J.: Antagonism and bistability in protein interaction networks. Journal of Theoretical Biology 250(1), 209–218 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Singhania, R., Sramkoski, R.M., Jacobberger, J.W., Tyson, J.J.: A hybrid model of mammalian cell cycle regulation. PLoS Comput. Biol. 7(2), e1001077 (2011)Google Scholar
  22. 22.
    Steuer, R.: Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations. Journal of Theoretical Biology 228(3), 293–301 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sveiczer, Á., Novák, B., Mitchison, J.: The size control of fission yeast revisited. J. Cell Sci. 109, 2947–2957 (1996)Google Scholar
  24. 24.
    Tyson, J., Novak, B.: Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. Journal of Theoretical Biology 210(2), 249–263 (2001)CrossRefGoogle Scholar
  25. 25.
    Tyson, J., Novak, B.: A Systems Biology View of the Cell Cycle Control Mechanisms. Elsevier, San Diego (2011)Google Scholar
  26. 26.
    Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: Ausiello, G., Böhm, C. (eds.) Proceedings of the Fifth Colloquium on Automata, Languages and Programming, vol. 62, pp. 464–476. Springer, Heidelburg (1978)CrossRefGoogle Scholar
  27. 27.
    Wikipedia: Wikipedia website (2012), http://www.wikipedia.org/ (accessed: September 20, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mostafa Herajy
    • 1
  • Martin Schwarick
    • 2
  • Monika Heiner
    • 2
  1. 1.Faculty of Science, Department of Mathematics and Computer SciencePort Said UniversityPort SaidEgypt
  2. 2.Computer Science Institute, Data Structures and Software DependabilityBrandenburg University of Technology at CottbusCottbusGermany

Personalised recommendations