Advertisement

Faster Mass Decomposition

  • Kai Dührkop
  • Marcus Ludwig
  • Marvin Meusel
  • Sebastian Böcker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8126)

Abstract

Metabolomics complements investigation of the genome, transcriptome, and proteome of an organism. Today, the vast majority of metabolites remain unknown, in particular for non-model organisms. Mass spectrometry is one of the predominant techniques for analyzing small molecules such as metabolites. A fundamental step for identifying a small molecule is to determine its molecular formula.

Here, we present and evaluate three algorithm engineering techniques that speed up the molecular formula determination. For that, we modify an existing algorithm for decomposing the monoisotopic mass of a molecule. These techniques lead to a four-fold reduction of running times, and reduce memory consumption by up to 94 %. In comparison to the classical search tree algorithm, our algorithm reaches a 1000-fold speedup.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, D., Cazals, F., Malod-Dognin, N.: Stoichiometry determination for mass-spectrometry data: the interval cases. In: Research Report 8101, Inria, Research Centre Sophia Antipolis – Méditerranée (October 2012)Google Scholar
  2. 2.
    Audi, G., Wapstra, A., Thibault, C.: The AME2003 atomic mass evaluation (ii): Tables, graphs, and references. Nucl. Phys. A 729, 129–336 (2003)CrossRefGoogle Scholar
  3. 3.
    Böcker, S., Letzel, M., Lipták, Z., Pervukhin, A.: SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics 25(2), 218–224 (2009)CrossRefGoogle Scholar
  4. 4.
    Böcker, S., Lipták, Z.: Efficient mass decomposition. In: Proc. of ACM Symposium on Applied Computing (ACM SAC 2005), pp. 151–157. ACM press, New York (2005)Google Scholar
  5. 5.
    Böcker, S., Lipták, Z.: A fast and simple algorithm for the Money Changing Problem. Algorithmica 48(4), 413–432 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, I49–I55 (2008); Proc. of European Conference on Computational Biology (ECCB 2008)Google Scholar
  7. 7.
    Cooper, M.A., Shlaes, D.: Fix the antibiotics pipeline. Nature 472(7341), 32 (2011)CrossRefGoogle Scholar
  8. 8.
    Cortina, N.S., Krug, D., Plaza, A., Revermann, O., Müller, R.: Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew. Chem. Int. Ed. Engl. 51(3), 811–816 (2012)CrossRefGoogle Scholar
  9. 9.
    Dromey, R.G., Foyster, G.T.: Calculation of elemental compositions from high resolution mass spectral data. Anal. Chem. 52(3), 394–398 (1980)CrossRefGoogle Scholar
  10. 10.
    Fürst, A., Clerc, J.-T., Pretsch, E.: A computer program for the computation of the molecular formula. Chemom. Intell. Lab. Syst. 5, 329–334 (1989)CrossRefGoogle Scholar
  11. 11.
    Hill, D.W., Kertesz, T.M., Fontaine, D., Friedman, R., Grant, D.F.: Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra. Anal. Chem. 80(14), 5574–5582 (2008)CrossRefGoogle Scholar
  12. 12.
    Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M.Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K., Nishioka, T.: MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45(7), 703–714 (2010)CrossRefGoogle Scholar
  13. 13.
    Jarussophon, S., Acoca, S., Gao, J.-M., Deprez, C., Kiyota, T., Draghici, C., Purisima, E., Konishi, Y.: Automated molecular formula determination by tandem mass spectrometry (MS/MS). Analyst. 134(4), 690–700 (2009)CrossRefGoogle Scholar
  14. 14.
    Last, R.L., Jones, A.D., Shachar-Hill, Y.: Towards the plant metabolome and beyond. Nat. Rev. Mol. Cell Biol. 8, 167–174 (2007)CrossRefGoogle Scholar
  15. 15.
    Li, J.W.-H., Vederas, J.C.: Drug discovery and natural products: End of an era or an endless frontier? Science 325(5937), 161–165 (2009)CrossRefGoogle Scholar
  16. 16.
    Lueker, G.S.: Two NP-complete problems in nonnegative integer programming. Technical Report TR-178, Department of Electrical Engineering, Princeton University (March 1975)Google Scholar
  17. 17.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, Chichester (1990)Google Scholar
  18. 18.
    Meringer, M., Reinker, S., Zhang, J., Muller, A.: MS/MS data improves automated determination of molecular formulas by mass spectrometry. MATCH-Commun. Math. Co. 65, 259–290 (2011)Google Scholar
  19. 19.
    Pluskal, T., Uehara, T., Yanagida, M.: Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. Anal. Chem. 84(10), 4396–4403 (2012)CrossRefGoogle Scholar
  20. 20.
    Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatoš, A., Böcker, S.: Identifying the unknowns by aligning fragmentation trees. Anal. Chem. 84(7), 3417–3426 (2012)CrossRefGoogle Scholar
  21. 21.
    Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böcker, S.: Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. 83(4), 1243–1251 (2011)CrossRefGoogle Scholar
  22. 22.
    Robertson, A.L., Hamming, M.C.: MASSFORM: a computer program for the assignment of elemental compositions to high resolution mass spectral data. Biomed. Mass Spectrom. 4(4), 203–208 (1977)CrossRefGoogle Scholar
  23. 23.
    Rojas-Chertó, M., Kasper, P.T., Willighagen, E.L., Vreeken, R.J., Hankemeier, T., Reijmers, T.H.: Elemental composition determination based on MSn. Bioinformatics 27, 2376–2383 (2011)CrossRefGoogle Scholar
  24. 24.
    Scheubert, K., Hufsky, F., Böcker, S.: Computational mass spectrometry for small molecules. J. Cheminform. 5, 12 (2013)CrossRefGoogle Scholar
  25. 25.
    Stravs, M.A., Schymanski, E.L., Singer, H.P., Hollender, J.: Automatic recalibration and processing of tandem mass spectra using formula annotation. J. Mass Spectrom. 48(1), 89–99 (2013)CrossRefGoogle Scholar
  26. 26.
    Wilf, H.: generatingfunctionology, 2nd edn. Academic Press (1994), Freely available from http://www.math.upenn.edu/~wilf/DownldGF.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kai Dührkop
    • 1
  • Marcus Ludwig
    • 1
  • Marvin Meusel
    • 1
  • Sebastian Böcker
    • 1
  1. 1.BioinformaticsFriedrich Schiller UniversityJenaGermany

Personalised recommendations