Multiscale Identification of Topological Domains in Chromatin

  • Darya Filippova
  • Rob Patro
  • Geet Duggal
  • Carl Kingsford
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8126)


Recent chromosome conformation capture experiments have led to the discovery of dense, contiguous, megabase-sized topological domains that are similar across cell types, are conserved across species. These domains are strongly correlated with a number of chromatin markers and have since been included in a number of analyses. However, functionally relevant domains may exist at multiple length scales. We introduce a new and efficient algorithm that is able to capture persistent domains across various resolutions by adjusting a single scale parameter. The identified novel domains are substantially different from domains reported previously and are highly enriched for insulating factor CTCF binding and histone modifications at the boundaries.


chromosome conformation capture topological domains weighted interval scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bickmore, W.A., van Steensel, B.: Genome Architecture: domain organization of interphase chromosomes. Cell 152(6), 1270–1284 (2013)CrossRefGoogle Scholar
  2. 2.
    Cavalli, G., Misteli, T.: Functional implications of genome topology. Nature Structural & Molecular Biology 20(3), 290–299 (2013)CrossRefGoogle Scholar
  3. 3.
    de Wit, E., de Laat, W.: A decade of 3C technologies: insights into nuclear organization.. Genes & Development 26(1), 11–24 (2012)CrossRefGoogle Scholar
  4. 4.
    Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., Ren, B.: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398), 376–380 (2012)CrossRefGoogle Scholar
  5. 5.
    Filippova, D., Gadani, A., Kingsford, C.: Coral: an integrated suite of visualizations for comparing clusterings. BMC Bioinformatics 13(1), 276 (2012)CrossRefGoogle Scholar
  6. 6.
    Fudenberg, G., Getz, G., Meyerson, M., Mirny, L.A.: High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnology 29(12), 1109–1113 (2011)CrossRefGoogle Scholar
  7. 7.
    Gibcus, J.H., Dekker, J.: The hierarchy of the 3D genome. Molecular Cell 49(5), 773–782 (2013)CrossRefGoogle Scholar
  8. 8.
    Goldberg, A.V.: Finding a maximum density subgraph. Computer Science Division. University of California, Berkeley (1984)Google Scholar
  9. 9.
    Hou, C., Li, L., Qin, Z.S., Corces, V.G.: Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Molecular cell 48(3), 471–484 (2012)CrossRefGoogle Scholar
  10. 10.
    Kim, T.H., Abdullaev, Z.K., Smith, A.D., Ching, K.A., Loukinov, D.I., Green, R.D., Zhang, M.Q., Lobanenkov, V.V., Ren, B.: Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128(6), 1231–1245 (2007)CrossRefGoogle Scholar
  11. 11.
    Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2005)Google Scholar
  12. 12.
    Kölbl, A.C., Weigl, D., Mulaw, M., Thormeyer, T., Bohlander, S.K., Cremer, T., Dietzel, S.: The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains.. Chromosome Research 20(6), 735–752 (2012)CrossRefGoogle Scholar
  13. 13.
    Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289–293 (2009)CrossRefGoogle Scholar
  14. 14.
    Lin, Y.C., Benner, C., Mansson, R., Heinz, S., Miyazaki, K., Miyazaki, M., Chandra, V., Bossen, C., Glass, C.K., Murre, C.: Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nature Immunology 13(12), 1196–1204 (2012)CrossRefGoogle Scholar
  15. 15.
    Meilă, M.: Comparing clusterings by the variation of information. Learning Theory and Kernel Machines 2777, 173–187 (2003)CrossRefGoogle Scholar
  16. 16.
    Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon, J., Lee, L., Lobanenkov, V.V., Ren, B.: A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012)CrossRefGoogle Scholar
  18. 18.
    Tanay, A., Cavalli, G.: Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization. Current Opinion in Genetics & Development 23(2), 197–203 (2013)CrossRefGoogle Scholar
  19. 19.
    Yaffe, E., Tanay, A.: Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nature Genetics 43(11), 1059–1065 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Darya Filippova
    • 1
    • 2
  • Rob Patro
    • 2
  • Geet Duggal
    • 1
    • 2
  • Carl Kingsford
    • 2
  1. 1.Ph.D. Program in Computational BiologyJoint Carnegie Mellon University, University of PittsburghPittsburghUSA
  2. 2.Lane Center for Computational BiologyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations