Euclidean Greedy Drawings of Trees

  • Martin Nöllenburg
  • Roman Prutkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)


Greedy embedding (or drawing) is a simple and efficient strategy to route messages in wireless sensor networks. For each source-destination pair of nodes s,t in a greedy embedding there is always a neighbor u of s that is closer to t according to some distance metric. The existence of Euclidean greedy embeddings in ℝ2 is known for certain graph classes such as 3-connected planar graphs. We completely characterize the trees that admit a greedy embedding in ℝ2. This answers a question by Angelini et al. (Graph Drawing 2009) and is a further step in characterizing the graphs that admit Euclidean greedy embeddings.


Wireless Sensor Network Maximum Degree Open Angle Wheel Condition Extremal Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–271. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Angelini, P., Di Battista, G., Frati, F.: Succinct greedy drawings do not always exist. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 171–182. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl. 14(1), 19–51 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dhandapani, R.: Greedy drawings of triangulations. Discrete Comput. Geom. 43, 375–392 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Vismara, L.: Angles of planar triangular graphs. In: Proc. Symp. Theory of Computing (STOC 1993), pp. 431–437. ACM (1993)Google Scholar
  6. 6.
    Eppstein, D., Goodrich, M.T.: Succinct greedy geometric routing using hyperbolic geometry. IEEE Trans. Computers 60(11), 1571–1580 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goodrich, M.T., Strash, D.: Succinct greedy geometric routing in the euclidean plane. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 781–791. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Kleinberg, R.: Geographic routing using hyperbolic space. In: Proc. Computer Communications (INFOCOM 2007), pp. 1902–1909. IEEE (2007)Google Scholar
  9. 9.
    Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete Comput. Geom. 44, 686–705 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Nöllenburg, M., Prutkin, R.: Euclidean greedy drawings of trees. CoRR arXiv:1306.5224 (2013)Google Scholar
  11. 11.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proc. Mobile Computing and Networking (MobiCom 2003), pp. 96–108. ACM (2003)Google Scholar
  13. 13.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. Discrete Algorithms (SODA 1990), pp. 138–148. SIAM, Philadelphia (1990)Google Scholar
  14. 14.
    Wang, J.J., He, X.: Succinct strictly convex greedy drawing of 3-connected plane graphs. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS, vol. 7285, pp. 13–25. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Nöllenburg
    • 1
  • Roman Prutkin
    • 1
  1. 1.Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyGermany

Personalised recommendations