Z-Skip-Links for Fast Traversal of ZDDs Representing Large-Scale Sparse Datasets

  • Shin-Ichi Minato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)


ZDD (Zero-suppressed Binary Decision Diagram) is known as an efficient data structure for representing and manipulating large-scale sets of combinations. In this article, we propose a method of using Z-Skip-Links to accelerate ZDD traversals for manipulating large-scale sparse datasets. We discuss average case complexity analysis of our method, and present the optimal parameter setting. Our method can be easily implemented into the existing ZDD packages just by adding one link per ZDD node. Experimental results show that we obtained dozens of acceleration ratio for the instances of the large-scale sparse datasets including thousands of items.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27(6), 509–516 (1978)Google Scholar
  2. 2.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35(8), 677–691 (1986)Google Scholar
  3. 3.
    Coudert, O.: Solving graph optimization problems with ZBDDs. In: Proc. of ACM/IEEE European Design and Test Conference (ED&TC 1997), pp. 224–228 (1997)Google Scholar
  4. 4.
    Goethals, B., Zaki, M.J.: Frequent itemset mining dataset repository. In: Frequent Itemset Mining Implementations (FIMI 2003) (2003),
  5. 5.
    Minato, S.I.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proc. of 30th ACM/IEEE Design Automation Conference (DAC 1993), pp. 272–277 (1993)Google Scholar
  6. 6.
    Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM algorithm by BDDs. In: Proc. of 18th International Conference on Inductive Logic Programming (ILP 2008), p. 9 (2008)Google Scholar
  7. 7.
    Knuth, D.E.: The Art of Computer Programming: Bitwise Tricks & Techniques; Binary Decision Diagrams, vol. 4, fascicle 1. Addison-Wesley (2009)Google Scholar
  8. 8.
    Loekit, E., Bailey, J.: Fast mining of high dimensional expressive contrast patterns using zero-suppressed binary decision diagrams. In: Proc. The Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), pp. 307–316 (2006)Google Scholar
  9. 9.
    Minato, S., Satoh, K., Sato, T.: Compiling bayesian networks by symbolic probability calculation based on zero-suppressed BDDs. In: Proc. of 20th International Joint Conference of Artificial Intelligence (IJCAI 2007), pp. 2550–2555 (2007)Google Scholar
  10. 10.
    Minato, S.-I.: Z-skip-links for fast zdd traversal in handling large-scale sparse datasets (revised ed.). Hokkaido University, Division of Computer Science. TCS Technical Reports, TCS-TR-A-13-66 (2013),
  11. 11.
    Minato, S.-I., Uno, T., Arimura, H.: LCM over ZBDDs: Fast generation of very large-scale frequent itemsets using a compact graph-based representation. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 234–246. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Algorithms and Data Structures 33(6), 668–676 (1990)MathSciNetGoogle Scholar
  13. 13.
    Yoshinaka, R., Kawahara, J., Denzumi, S., Arimura, H., Minato, S.-I.: Counterexamples to the long-standing conjecture on the complexity of bdd binary operations. Information Processing Letters 112(16), 636–640 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shin-Ichi Minato
    • 1
    • 2
  1. 1.Graduate School of Information Science and TechnologyHokkaido UniversityJapan
  2. 2.JST ERATO MINATO Discrete Structure Manipulation System ProjectHokkaido UniversityJapan

Personalised recommendations