The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology

  • Jean-Daniel Boissonnat
  • Tamal K. Dey
  • Clément Maria
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)

Abstract

Persistent homology with coefficients in a field \(\mathbb{F}\) coincides with the same for cohomology because of duality. We propose an implementation of a recently introduced algorithm for persistent cohomology that attaches annotation vectors with the simplices. We separate the representation of the simplicial complex from the representation of the cohomology groups, and introduce a new data structure for maintaining the annotation matrix, which is more compact and reduces substancially the amount of matrix operations. In addition, we propose a heuristic to simplify further the representation of the cohomology groups and improve both time and space complexities. The paper provides a theoretical analysis, as well as a detailed experimental study of our implementation and comparison with state-of-the-art software for persistent homology and cohomology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, U., Kerber, M., Reininghaus, J.: Clear and compress: Computing persistent homology in chunks. arXiv/1303.0477 (2013)Google Scholar
  2. 2.
    Boissonnat, J.-D., Maria, C.: The simplex tree: An efficient data structure for general simplicial complexes. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 731–742. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Busaryev, O., Cabello, S., Chen, C., Dey, T.K., Wang, Y.: Annotating simplices with a homology basis and its applications. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 189–200. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Chen, C., Kerber, M.: Persistent homology computation with a twist. In: Proceedings 27th European Workshop on Computational Geometry (2011)Google Scholar
  5. 5.
    Chen, C., Kerber, M.: An output-sensitive algorithm for persistent homology. Comput. Geom. 46(4), 435–447 (2013)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete & Computational Geometry 37(1), 103–120 (2007)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Inverse Problems 27, 124003 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete Comput. Geom. 45, 737–759 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. CoRR, abs/1208.5018 (2012)Google Scholar
  10. 10.
    Edelsbrunner, H., Harer, J.: Computational Topology - an Introduction. American Mathematical Society (2010)Google Scholar
  11. 11.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Milosavljevic, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Symposium on Comp. Geom. (2011)Google Scholar
  13. 13.
    Morozov, D.: Persistence algorithm takes cubic time in worst case. In: BioGeometry News, Dept. Comput. Sci., Duke Univ. (2005)Google Scholar
  14. 14.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete & Computational Geometry 33(2), 249–274 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean-Daniel Boissonnat
    • 1
  • Tamal K. Dey
    • 2
  • Clément Maria
    • 1
  1. 1.INRIA Sophia Antipolis-MéditerranéeFrance
  2. 2.The Ohio State UniversityUSA

Personalised recommendations