Improved Approximation Algorithms for Projection Games

(Extended Abstract)
  • Pasin Manurangsi
  • Dana Moshkovitz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)


The projection games (aka Label-Cover) problem is of great importance to the field of approximation algorithms, since most of the NP-hardness of approximation results we know today are reductions from Label-Cover. In this paper we design several approximation algorithms for projection games:

  1. 1

    A polynomial-time approximation algorithm that improves on the previous best approximation by Charikar, Hajiaghayi and Karloff [7].

  2. 2

    A sub-exponential time algorithm with much tighter approximation for the case of smooth projection games.

  3. 3

    A PTAS for planar graphs.



Label-Cover projection games 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Barak, B., Steurer, D.: Subexponential algorithms for unique games and related problems. In: Proc. 51st IEEE Symp. on Foundations of Computer Science (2010)Google Scholar
  2. 2.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM 45(1), 70–122 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proc. 23rd ACM Symp. on Theory of Computing, pp. 21–32 (1991)Google Scholar
  5. 5.
    Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover interactive protocols. Computational Complexity 1, 3–40 (1991)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability-towards tight results. SIAM J. Comput. 27(3), 804–915 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Charikar, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for label cover problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 23–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dinur, I., Steurer, D.: Analytical approach to parallel repetition. Tech. Rep. 1305.1979, arXiv (2013)Google Scholar
  9. 9.
    Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC 1974, pp. 47–63. ACM, New York (1974)CrossRefGoogle Scholar
  11. 11.
    Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48(4), 798–859 (2001)Google Scholar
  12. 12.
    Holmerin, J., Khot, S.: A new PCP outer verifier with applications to homogeneous linear equations and max-bisection. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 11–20. ACM, New York (2004)CrossRefGoogle Scholar
  13. 13.
    Khot, S.: Hardness results for coloring 3-colorable 3-uniform hypergraphs. In: Proc. 43rd IEEE Symp. on Foundations of Computer Science, pp. 23–32 (2002)Google Scholar
  14. 14.
    Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th ACM Symp. on Theory of Computing, pp. 767–775 (2002)Google Scholar
  15. 15.
    Klein, P.N.: A linear-time approximation scheme for TSP for planar weighted graphs. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, pp. 146–155 (2005)Google Scholar
  16. 16.
    Moshkovitz, D.: The projection games conjecture and the NP-hardness of ln n-approximating set-cover. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 276–287. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    Moshkovitz, D., Raz, R.: Two query PCP with sub-constant error. Journal of the ACM 57(5) (2010)Google Scholar
  18. 18.
    Peleg, D.: Approximation algorithms for the label-cover max and red-blue set cover problems. J. of Discrete Algorithms 5(1), 55–64 (2007)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27, 763–803 (1998)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pasin Manurangsi
    • 1
  • Dana Moshkovitz
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations