Parameterized Complexity of Directed Steiner Tree on Sparse Graphs

  • Mark Jones
  • Daniel Lokshtanov
  • M. S. Ramanujan
  • Saket Saurabh
  • Ondřej Suchý
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)

Abstract

We study the parameterized complexity of the directed variant of the classical Steiner Tree problem on various classes of directed sparse graphs. While the parameterized complexity of Steiner Tree parameterized by the number of terminals is well understood, not much is known about the parameterization by the number of non-terminals in the solution tree. All that is known for this parameterization is that both the directed and the undirected versions are W2-hard on general graphs, and hence unlikely to be fixed parameter tractable (FPT). The undirected Steiner Tree problem becomes FPT when restricted to sparse classes of graphs such as planar graphs, but the techniques used to show this result break down on directed planar graphs.

In this article we precisely chart the tractability border for Directed Steiner Tree (DST) on sparse graphs parameterized by the number of non-terminals in the solution tree. Specifically, we show that the problem is fixed parameter tractable on graphs excluding a topological minor, but becomes W2-hard on graphs of degeneracy 2. On the other hand we show that if the subgraph induced by the terminals is required to be acyclic then the problem becomes FPT on graphs of bounded degeneracy.

We also show that our algorithm achieves the best possible running time dependence on the solution size and degeneracy of the input graph, under standard complexity theoretic assumptions. Using the ideas developed for DST, we also obtain improved algorithms for Dominating Set on sparse undirected graphs. These algorithms are asymptotically optimal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544–556 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32(4), 171–176 (1989)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bollobás, B., Thomason, A.: Proof of a conjecture of Mader, Erdös and Hajnal on topological complete subgraphs. Eur. J. Comb. 19(9), 883–887 (1998)MATHCrossRefGoogle Scholar
  4. 4.
    Charikar, M., Chekuri, C., Cheung, T.-Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. J. Algorithms 33(1), 73–91 (1999)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-weighted Steiner tree and group Steiner tree in planar graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 328–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco (1979)MATHGoogle Scholar
  9. 9.
    Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs. In: STOC, pp. 173–192 (2012)Google Scholar
  10. 10.
    Halperin, E., Kortsarz, G., Krauthgamer, R., Srinivasan, A., Wang, N.: Integrality ratio for group Steiner trees and directed Steiner trees. SIAM J. Comput. 36(5), 1494–1511 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland (1992)Google Scholar
  12. 12.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Jones, M., Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Suchý, O.: Parameterized complexity of directed steiner tree on sparse graphs. CoRR, abs/1210.0260 (2012)Google Scholar
  14. 14.
    Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. Journal of Algorithms 19(1), 104–115 (1995)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Komlós, J., Szemerédi, E.: Topological cliques in graphs 2. Combinatorics, Probability & Computing 5, 79–90 (1996)MATHCrossRefGoogle Scholar
  16. 16.
    Korte, B., Prömel, H.J., Steger, A.: Steiner trees in VLSI-layout. In: Paths, Flows and VLSI-Layout, pp. 185–214 (1990)Google Scholar
  17. 17.
    Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 269–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algorithms for connected vertex cover and tree cover. Theory Comput. Syst. 43(2), 234–253 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Nederlof, J.: Fast polynomial-space algorithms using möbius inversion: Improving on steiner tree and related problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 713–725. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Prömel, H.J., Steger, A.: The Steiner Tree Problem; a Tour through Graphs, Algorithms, and Complexity. Vieweg (2002)Google Scholar
  21. 21.
    Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner tree problem. Algorithmica 18(1), 99–110 (1997)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Zosin, L., Khuller, S.: On directed Steiner trees. In: Proc. SODA 2002, pp. 59–63 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mark Jones
    • 1
  • Daniel Lokshtanov
    • 2
  • M. S. Ramanujan
    • 3
  • Saket Saurabh
    • 2
    • 3
  • Ondřej Suchý
    • 4
  1. 1.Royal Holloway University of LondonUnited Kingdom
  2. 2.University of BergenNorway
  3. 3.Institute of Mathematical SciencesIndia
  4. 4.Czech Technical University in PragueCzech Republic

Personalised recommendations