On the Computational Complexity of Erdős-Szekeres and Related Problems in ℝ3

  • Panos Giannopoulos
  • Christian Knauer
  • Daniel Werner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)

Abstract

The Erdős-Szekeres theorem states that, for every k, there is a number nk such that every set of nk points in general position in the plane contains a subset of k points in convex position. If we ask the same question for subsets whose convex hull does not contain any other point from the set, this is not true: as shown by Horton, there are sets of arbitrary size that do not contain an empty convex 7-gon.

These problems have been studied also from a computational point of view, and, while several polynomial-time algorithms are known for finding a largest (empty) convex subset in the planar case, the complexity of the problems in higher dimensions has been, so far, open. In this paper, we give the first non-trivial results in this direction. First, we show that already in dimension 3 (the decision versions of) both problems are NP-hard. Then, we show that when an empty convex subset is sought, the problem is even W[1]-hard w.r.t. the size of the solution subset.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avis, D., Rappaport, D.: Computing the largest empty convex subset of a set of points. In: Proceedings of the first Annual Symposium on Computational Geometry, SCG 1985, pp. 161–167. ACM (1985)Google Scholar
  2. 2.
    Bárány, I., Károlyi, G.: Problems and Results around the Erdős-Szekeres Convex Polygon Theorem. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 91–105. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Buchin, K., Plantinga, S., Rote, G., Sturm, A., Vegter, G.: Convex approximation by spherical patches. In: Proceedings of the 23rd EuroCG, pp. 26–29 (2007)Google Scholar
  4. 4.
    Cerioli, M., Faria, L., Ferreira, T., Protti, F.: On minimum clique partition and maximum independent set on unit disk graphs and penny graphs: complexity and approximation. Electronic Notes in Discrete Mathematics 18, 73–79 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chvátal, V., Klincsek, G.: Finding largest convex subsets. In: Congresus Numeratium, pp. 453–460 (1980)Google Scholar
  6. 6.
    Dobkin, D., Edelsbrunner, H., Overmars, M.: Searching for empty convex polygons. Algorithmica 5(4), 561–571 (1990)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)MathSciNetGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. Springer (2006)Google Scholar
  9. 9.
    Horton, J.D.: Sets with no empty convex 7-gons. C. Math. Bull. 26, 482–484 (1983)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer (2002)Google Scholar
  11. 11.
    Mitchell, J.S.B., Rote, G., Sundaram, G., Woeginger, G.: Counting convex polygons in planar point sets. Information Processing Letters 56(1), 45–49 (1995)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Morris, W., Soltan, V.: The Erdős-Szekeres problem on points in convex position – a survey. Bull. Amer. Math. Soc. 37, 437–458 (2000)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Panos Giannopoulos
    • 1
  • Christian Knauer
    • 1
  • Daniel Werner
    • 2
  1. 1.Institut für InformatikUniversität BayreuthBayreuthGermany
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations