Advertisement

Rumor Spreading in Random Evolving Graphs

  • Andrea Clementi
  • Pierluigi Crescenzi
  • Carola Doerr
  • Pierre Fraigniaud
  • Marco Isopi
  • Alessandro Panconesi
  • Francesco Pasquale
  • Riccardo Silvestri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)

Abstract

In this paper, we aim at analyzing the classical information spreading push protocol in dynamic networks. We consider the edge-Markovian evolving graph model which captures natural temporal dependencies between the structure of the network at time t, and the one at time t + 1. Precisely, a non-edge appears with probability p, while an existing edge dies with probability q. In order to fit with real-world traces, we mostly concentrate our study on the case where \(p=\Omega(\frac{1}{n})\) and q is constant. We prove that, in this realistic scenario, the push protocol does perform well, completing information spreading in O(logn) time steps, w.h.p., even when the network is, w.h.p., disconnected at every time step (e.g., when \(p\ll \frac{\log n}{n}\)). The bound is tight. We also address other ranges of parameters p and q (e.g., p + q = 1 with arbitrary p and q, and \(p=\Theta\left(\frac{1}{n}\right)\) with arbitrary q). Although they do not precisely fit with the measures performed on real-world traces, they can be of independent interest for other settings. The results in these cases confirm the positive impact of dynamism.

Keywords

Completion Time Dynamic Network Random Graph Virtual Node Dynamic Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (Cover time of a simple random walk on evolving graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM J. on Computing 29(1), 180–200 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distributed Computing 24(1), 31–44 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bollobás, B.: Random Graphs. Cambridge University Press (2001)Google Scholar
  5. 5.
    Boyd, S., Arpita, G., Balaji, P., Devavrat, S.: Gossip algorithms: Design, analysis and applications. In: Proc. of 24th INFOCOM, pp. 1653–1664. IEEE (2005)Google Scholar
  6. 6.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumor Spreading in Social Networks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 375–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds on rumour spreading by conductance. In: Proc. of 42nd ACM STOC, pp. 399–408 (2010)Google Scholar
  8. 8.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph conductance. In: Proc. of 21th ACM-SIAM SODA, pp. 1657–1663 (2010)Google Scholar
  9. 9.
    Clementi, A., Crescenzi, P., Doerr, C., Fraigniaud, P., Isopi, M., Pasquale, F., Panconesi, A., Silvestri, R.: Rumor Spreading in Random Evolving Graphs, http://arxiv.org/abs/1302.3828
  10. 10.
    Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time of edge-Markovian evolving graphs. SIAM J. Discrete Math. 24(4), 1694–1712 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Broadcasting in dynamic radio networks. J. Comput. Syst. Sci. 75(4), 213–230 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in stationary Markovian evolving graph. IEEE Trans. Parallel Distrib. Syst. 22(9), 1425–1432 (2011)CrossRefGoogle Scholar
  13. 13.
    Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proc. of 6th ACM PODC, pp. 1–12 (1987)Google Scholar
  14. 14.
    Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: Proc. of 43rd ACM STOC, pp. 21–30. ACM, New York (2011)Google Scholar
  15. 15.
    Doerr, B., Huber, A., Levavi Strong, A.: robustness of randomized rumor spreading protocols. Discrete Applied Mathematics 161(6), 778–793 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Erdős, P., Rényi, A.: On Random Graphs. Publ. Math. 6, 290–297 (1959)Google Scholar
  17. 17.
    Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Structures and Algorithms 1(4), 447–460 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ferreira, A.: On models and algorithms for dynamic communication networks: The case for evolving graphs. In: Proc. of 4th ALGOTEL, pp. 155–161 (2002)Google Scholar
  19. 19.
    Fountoulakis, N., Huber, A., Panagiotou, K.: Reliable broadcasting in random networks and the effect of density. In: Proc. of 29th IEEE INFOCOM, pp. 2552–2560 (2010)Google Scholar
  20. 20.
    Fountoulakis, N., Panagiotou, K.: Rumor spreading on random regular graphs and expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)Google Scholar
  21. 21.
    Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: Proc. of 23rd ACM-SIAM SODA, pp. 1642–1660 (2012)Google Scholar
  22. 22.
    Frieze, A., Grimmett, G.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10(1), 57–77 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: Proc. of 28th STACS. LIPIcs, vol. 9, pp. 57–68. Schloss Dagstuhl (2011)Google Scholar
  24. 24.
    Giakkoupis, G., Sauerwald, T.: Rumor spreading and vertex expansion. In: Proc. of 23rd ACM-SIAM SODA, pp. 1623–1641. SIAM (2012)Google Scholar
  25. 25.
    Gilbert, E.N.: Random graphs. Annals of Math. Statistics 30(4), 1141–1144 (1959)zbMATHCrossRefGoogle Scholar
  26. 26.
    Grindrod, P., Higham, D.J.: Evolving graphs: dynamical models, inverse problems and propagation. Proc. R. Soc. A 466(2115), 753–770 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Harchol-Balter, M., Leighton, T., Lewin, D.: Resource discovery in distributed networks. In: Proc. of 18th PODC, pp. 229–237. ACM, New York (1999)Google Scholar
  28. 28.
    Jacquet, P., Mans, B., Rodolakis, G.: Information Propagation Speed in Mobile and Delay Tolerant Networks. IEEE Trans. on Inf. Theory 56, 5001–5015 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based Peer Sampling. ACM Trans. Comp. Syst. 25(3), Article 8 (2007)Google Scholar
  30. 30.
    Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: Proc. of 41st IEEE FOCS, pp. 565–574. IEEE (2000)Google Scholar
  31. 31.
    Kermarrec, A.-M., van Steen, M.: Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41(5), 2–7 (2007)CrossRefGoogle Scholar
  32. 32.
    Kuhn, F., Linch, N., Oshman, R.: Distributed Computation in Dynamic Networks. In: Proc. of 42nd ACM STOC, pp. 513–522. ACM, New York (2010)Google Scholar
  33. 33.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  34. 34.
    Pittel, B.: On spreading a rumor. SIAM Journal on Applied Mathematics 47(1), 213–223 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Sauerwald, T., Stauffer, A.: Rumor spreading and vertex expansion on regular graphs. In: Proc. of 22nd ACM-SIAM SODA, pp. 462–475. SIAM (2011)Google Scholar
  36. 36.
    Van Renesse, R., Minsky, Y., Hayden, M.: A Gossip-Style Failure Detection Service. In: Proc. of Middleware, pp. 55–70 (1998)Google Scholar
  37. 37.
    Vojnovic, M., Proutier, A.: Hop limited flooding over dynamic networks. In: Proc. of 30th IEEE INFOCOM, pp. 685–693. IEEE (2011)Google Scholar
  38. 38.
    Whitbeck, J., Conan, V., de Amorim, M.D.: Performance of Opportunistic Epidemic Routing on Edge-Markovian Dynamic Graphs. IEEE Transactions on Communications 59(5), 1259–1263 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrea Clementi
    • 1
  • Pierluigi Crescenzi
    • 2
  • Carola Doerr
    • 3
  • Pierre Fraigniaud
    • 4
  • Marco Isopi
    • 5
  • Alessandro Panconesi
    • 5
  • Francesco Pasquale
    • 5
  • Riccardo Silvestri
    • 5
  1. 1.Università Tor Vergata di RomaItaly
  2. 2.Università di FirenzeItaly
  3. 3.Université Paris Diderot and Max Planck Institute SaarbrückenGermany
  4. 4.CNRS and Université Paris DiderotFrance
  5. 5.Sapienza Università di RomaItaly

Personalised recommendations