List H-Coloring a Graph by Removing Few Vertices

  • Rajesh Chitnis
  • László Egri
  • Dániel Marx
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)


In the deletion version of the list homomorphism problem, we are given graphs G and H, a list L(v) ⊆ V(H) for each vertex v ∈ V(G), and an integer k. The task is to decide whether there exists a set W ⊆ V(G) of size at most k such that there is a homomorphism from G ∖ W to H respecting the lists. We show that DL-Hom( H ), parameterized by k and |H|, is fixed-parameter tractable for any (P 6,C 6)-free bipartite graph H; already for this restricted class of graphs, the problem generalizes Vertex Cover, Odd Cycle Transversal, and Vertex Multiway Cut parameterized by the size of the cutset and the number of terminals. We conjecture that DL-Hom( H ) is fixed-parameter tractable for the class of graphs H for which the list homomorphism problem (without deletions) is polynomial-time solvable; by a result of Feder et al. [9], a graph H belongs to this class precisely if it is a bipartite graph whose complement is a circular arc graph. We show that this conjecture is equivalent to the fixed-parameter tractability of a single fairly natural satisfiability problem, Clause Deletion Chain-SAT.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chitnis, R., Cygan, M., Hajiaghayi, M., Marx, D.: Directed subset feedback vertex set is fixed-parameter tractable. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 230–241. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. In: SODA (2012)Google Scholar
  3. 3.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 193–242. Elsevier, Amsterdam (1990)Google Scholar
  4. 4.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. SpringerGoogle Scholar
  6. 6.
    Egri, L., Hell, P., Larose, B., Rafiey, A.: An L vs. NL dichotomy for the digraph list homomorphism problem (2013) (manuscript in preparation)Google Scholar
  7. 7.
    Egri, L., Krokhin, A.A., Larose, B., Tesson, P.: The complexity of the list homomorphism problem for graphs. Theory of Computing Systems 51(2) (2012)Google Scholar
  8. 8.
    Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Comb. Theory, Ser. B 72(2), 236–250 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combinatorica 19(4), 487–505 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Feder, T., Hell, P., Huang, J.: Bi-arc graphs and the complexity of list homomorphisms. Journal of Graph Theory 42(1), 61–80 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Feder, T., Hell, P., Huang, J.: List homomorphisms of graphs with bounded degrees. Discrete Mathematics 307, 386–392 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  14. 14.
    Gutin, G., Rafiey, A., Yeo, A.: Minimum cost and list homomorphisms to semicomplete digraphs. Discrete Applied Mathematics 154, 890–897 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University PressGoogle Scholar
  16. 16.
    Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial Theory, Series B 48, 92–110 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hell, P., Rafiey, A.: The dichotomy of list homomorphisms for digraphs. In: SODA, pp. 1703–1713 (2011)Google Scholar
  18. 18.
    Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter tractability of multicut in directed acyclic graphs. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 581–593. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Lokshtanov, D., Marx, D.: Clustering with local restrictions. Inf. Comput. 222, 278–292 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lokshtanov, D., Ramanujan, M.S.: Parameterized tractability of multiway cut with parity constraints. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 750–761. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. CoRR, abs/1110.4765 (2011)Google Scholar
  23. 23.
    Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: STOC, pp. 469–478 (2011)Google Scholar
  24. 24.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  25. 25.
    Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rajesh Chitnis
    • 1
  • László Egri
    • 2
  • Dániel Marx
    • 2
  1. 1.Department of Computer ScienceUniversity of Maryland at College ParkUSA
  2. 2.Computer and Automation Research InstituteHungarian Academy of Sciences (MTA SZTAKI)BudapestHungary

Personalised recommendations