Advertisement

Vertex Deletion for 3D Delaunay Triangulations

  • Kevin Buchin
  • Olivier Devillers
  • Wolfgang Mulzer
  • Okke Schrijvers
  • Jonathan Shewchuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)

Abstract

We show how to delete a vertex q from a three-dimensional Delaunay triangulation DT(S) in expected O(C  ⊗ (P)) time, where P is the set of vertices neighboring q in DT(S) and C  ⊗ (P) is an upper bound on the expected number of tetrahedra whose circumspheres enclose q that are created during the randomized incremental construction of DT(P). Experiments show that our approach is significantly faster than existing implementations if q has high degree, and competitive if q has low degree.

Keywords

Point Location Voronoi Diagram Delaunay Triangulation Binary Search Tree Incremental Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discr. Comp. Geom. 4, 591–604 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Amenta, N., Choi, S., Rote, G.: Incremental constructions con BRIO. In: 19th Sympos. Comput. Geom., pp. 211–219 (2003)Google Scholar
  3. 3.
    Boissonnat, J.-D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations in CGAL. Comput. Geom. 22, 5–19 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. System Sci. 18(2), 143–154 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    CGAL. Computational Geometry Algorithms Library (2013), http://www.cgal.org
  6. 6.
    Chazelle, B., Mulzer, W.: Computing hereditary convex structures. Discr. Comp. Geom. 45(4), 796–823 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cheng, S.-W., Dey, T.K., Shewchuk, J.R.: Delaunay Mesh Generation (2012)Google Scholar
  8. 8.
    Chew, L.P.: Building Voronoi diagrams for convex polygons in linear expected time. Technical Report PCS-TR90-147, Dartmouth College (1990)Google Scholar
  9. 9.
    Chew, L.P.: Guaranteed-Quality Mesh Generation for Curved Surfaces. In: 9th Sympos. Computat. Geom., pp. 274–280 (1993)Google Scholar
  10. 10.
    Choi, S.: The Delaunay tetrahedralization from Delaunay triangulated surfaces. In: 18th Sympos. Comput. Geom., pp. 145–150 (2002)Google Scholar
  11. 11.
    Devillers, O.: The Delaunay hierarchy. Int. J. Found. Comp. Sc. 13, 163–180 (2002)Google Scholar
  12. 12.
    Devillers, O.: On deletion in Delaunay triangulations. Internat. J. Comput. Geom. Appl. 12(3), 193–205 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Devillers, O.: Vertex removal in two-dimensional Delaunay triangulation: Speed-up by low degrees optimization. Comput. Geom. 44(3), 169–177 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Erickson, J.: Nice point sets can have nasty Delaunay triangulations. Discr. Comp. Geo. 30(1), 109–132 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Joe, B.: Three-Dimensional Triangulations from Local Transformations. SIAM Journal on Scientific and Statistical Computing 10, 718–741 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lee, D.-T., Lin, A.K.: Generalized Delaunay Triangulations for Planar Graphs. Discr. Comp. Geo. 1, 201–217 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Schrijvers, O.: Insertions and deletions in Delaunay triangulations using guided point location. Master’s thesis, Technische Universiteit Eindhoven (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Olivier Devillers
    • 2
  • Wolfgang Mulzer
    • 3
  • Okke Schrijvers
    • 4
  • Jonathan Shewchuk
    • 5
  1. 1.Technical University EindhovenThe Netherlands
  2. 2.INRIA Sophia Antipolis - MéditerranéeFrance
  3. 3.Freie Universität BerlinGermany
  4. 4.Stanford UniversityUSA
  5. 5.University of California at BerkeleyUSA

Personalised recommendations