Computing the Fréchet Distance with a Retractable Leash

  • Kevin Buchin
  • Maike Buchin
  • Rolf van Leusden
  • Wouter Meulemans
  • Wolfgang Mulzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)


All known algorithms for the Fréchet distance between curves proceed in two steps: first, they construct an efficient oracle for the decision version; then they use this oracle to find the optimum among a finite set of critical values. We present a novel approach that avoids the detour through the decision version. We demonstrate its strength by presenting a quadratic time algorithm for the Fréchet distance between polygonal curves in ℝ d under polyhedral distance functions, including L 1 and L  ∞ . We also get a (1 + ε)-approximation of the Fréchet distance under the Euclidean metric. For the exact Euclidean case, our framework currently gives an algorithm with running time O(n 2 log2 n). However, we conjecture that it may eventually lead to a faster exact algorithm.


Euclidean Distance Line Segment Distance Function Cell Boundary Decision Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. IJCGA 5(1-2), 78–99 (1995)MathSciNetGoogle Scholar
  2. 2.
    Alt, H., Knauer, C.: Matching Polygonal Curves with Respect to the Fréchet Distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63–74. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proc. 31st Int. Conf. VLDBs, pp. 853–864 (2005)Google Scholar
  4. 4.
    Brodal, G., Jacob, R.: Dynamic planar convex hull. In: Proc. 43rd FOCS, pp. 617–626 (2002)Google Scholar
  5. 5.
    Buchin, K., Buchin, M., Gudmundsson, J.: Constrained free space diagrams: a tool for trajectory analysis. IJGIS 24(7), 1101–1125 (2010)Google Scholar
  6. 6.
    Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting patterns by clustering subtrajectories. IJCGA 21(3), 253–282 (2011)zbMATHGoogle Scholar
  7. 7.
    Buchin, K., Buchin, M., van Leusden, R., Meulemans, W., Mulzer, W.: Computing the Fréchet Distance with a Retractable Leash. CoRR, abs/1306.5527 (2013)Google Scholar
  8. 8.
    Buchin, K., Buchin, M., Meulemans, W., Mulzer, W.: Four soviets walk the dog - with an application to Alt’s conjecture. CoRR, abs/1209.4403 (2012)Google Scholar
  9. 9.
    Buchin, K., Buchin, M., Meulemans, W., Speckmann, B.: Locally correct Fréchet matchings. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 229–240. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Cook, A.F., Wenk, C.: Geodesic Fréchet distance inside a simple polygon. ACM Trans. on Algo. 7(1), Art. 9, 9 (2010)Google Scholar
  11. 11.
    de Berg, M., van Kreveld, M.J.: Trekking in the Alps Without Freezing or Getting Tired. Algorithmica 18(3), 306–323 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near linear time. In: Proc. 26th SoCG, pp. 365–374 (2010)Google Scholar
  13. 13.
    Har-Peled, S., Raichel, B.: The Fréchet distance revisited and extended. In: Proc. 27th SoCG, pp. 448–457 (2011)Google Scholar
  14. 14.
    Overmars, M., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. System Sci. 23(2), 166–204 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: Localizing global curve-matching algorithms. In: Proc. 18th Int. Conf. on Sci. and Stat. Database Management, pp. 379–388 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Maike Buchin
    • 2
  • Rolf van Leusden
    • 1
  • Wouter Meulemans
    • 1
  • Wolfgang Mulzer
    • 3
  1. 1.Technical University EindhovenThe Netherlands
  2. 2.Ruhr Universität BochumGermany
  3. 3.Freie Universität BerlinGermany

Personalised recommendations