The Encoding Complexity of Two Dimensional Range Minimum Data Structures

  • Gerth Stølting Brodal
  • Andrej Brodnik
  • Pooya Davoodi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)


In the two-dimensional range minimum query problem an input matrix A of dimension m ×n, m ≤ n, has to be preprocessed into a data structure such that given a query rectangle within the matrix, the position of a minimum element within the query range can be reported. We consider the space complexity of the encoding variant of the problem where queries have access to the constructed data structure but can not access the input matrix A, i.e. all information must be encoded in the data structure. Previously it was known how to solve the problem with space O(mn min {m,logn}) bits (and with constant query time), but the best lower bound was Ω(mnlogm) bits, i.e. leaving a gap between the upper and lower bounds for non-quadratic matrices. We show that this space lower bound is optimal by presenting an encoding scheme using O(mnlogm) bits. We do not consider query time.


Span Tree Internal Node Minimum Element Query Time Input Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays. In: Mehlhorn, K. (ed.) SoCG, pp. 131–139. ACM (1989)Google Scholar
  4. 4.
    Davoodi, P.: Data Structures: Range Queries and Space Efficiency. PhD thesis, Aarhus University, Aarhus, Denmark (2011)Google Scholar
  5. 5.
    Davoodi, P., Raman, R., Rao, S.S.: Succinct representations of binary trees for range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: DeMillo, R.A. (ed.) STOC, pp. 135–143. ACM (1984)Google Scholar
  9. 9.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete Algorithms 5(1), 12–22 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidimensional arrays. In: Charikar, M. (ed.) SODA, pp. 150–160. SIAM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gerth Stølting Brodal
    • 1
  • Andrej Brodnik
    • 2
    • 3
  • Pooya Davoodi
    • 4
  1. 1.MADALGO, Department of Computer ScienceAarhus UniversityDenmark
  2. 2.Department of Information Science and TechnologyUniversity of PrimorskaSlovenia
  3. 3.Faculty of Computer and Information ScienceUniversity of LjubljanaSlovenia
  4. 4.Polytechnic Institute of New York UniversityUSA

Personalised recommendations