Advertisement

Conversational Gaze Aversion for Virtual Agents

  • Sean Andrist
  • Bilge Mutlu
  • Michael Gleicher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8108)

Abstract

In conversation, people avert their gaze from one another to achieve a number of conversational functions, including turn-taking, regulating intimacy, and indicating that cognitive effort is being put into planning an utterance. In this work, we enable virtual agents to effectively use gaze aversions to achieve these same functions in conversations with people. We extend existing social science knowledge of gaze aversion by analyzing video data of human dyadic conversations. This analysis yielded precise timings of speaker and listener gaze aversions, enabling us to design gaze aversion behaviors for virtual agents. We evaluated these behaviors for their ability to achieve positive conversational functions in a laboratory experiment with 24 participants. Results show that virtual agents employing gaze aversion are perceived as thinking, are able to elicit more disclosure from human interlocutors, and are able to regulate conversational turn-taking.

Keywords

Gaze aversion virtual agents conversational behavior intimacy disclosure turn-taking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abele, A.: Functions of gaze in social interaction: Communication and monitoring. Journal of Nonverbal Behavior 10(2), 83–101 (1986)CrossRefGoogle Scholar
  2. 2.
    Andrist, S., Pejsa, T., Mutlu, B., Gleicher, M.: Designing effective gaze mechanisms for virtual agents. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, pp. 705–714. ACM (2012)Google Scholar
  3. 3.
    Andrist, S., Pejsa, T., Mutlu, B., Gleicher, M.: A head-eye coordination model for animating gaze shifts of virtual characters. In: Proceedings of the 4th Workshop on Eye Gaze in Intelligent Human Machine Interaction, pp. 4:1–4:6. ACM (2012)Google Scholar
  4. 4.
    Argyle, M., Cook, M.: Gaze and mutual gaze. Cambridge University Press, Cambridge (1976)Google Scholar
  5. 5.
    Beattie, G.W.: A further investigation of the cognitive interference hypothesis of gaze patterns during conversation. British Journal of Social Psychology 20(4), 243–248 (1981)CrossRefGoogle Scholar
  6. 6.
    Bee, N., Wagner, J., André, E., Vogt, T., Charles, F., Pizzi, D., Cavazza, M.: Discovering eye gaze behavior during human-agent conversation in an interactive storytelling application. In: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, pp. 9:1–9:8. ACM (2010)Google Scholar
  7. 7.
    Cassell, J., Torres, O., Prevost, S.: Turn taking vs. discourse structure: How best to model multimodal conversation. In: Machine Conversations, pp. 143–154 (1999)Google Scholar
  8. 8.
    Doherty-Sneddon, G., Phelps, F.: Gaze aversion: A response to cognitive or social difficulty? Memory & Cognition 33(4), 727–733 (2005)CrossRefGoogle Scholar
  9. 9.
    Ehrlichman, H., Micic, D.: Why do people move their eyes when they think? Current Directions in Psychological Science 21(2), 96–100 (2012)CrossRefGoogle Scholar
  10. 10.
    Exline, R., Gray, D., Schuette, D.: Visual behavior in a dyad as affected by interview content and sex of respondent. Journal of Personality and Social Psychology 95, 201–209 (1965)CrossRefGoogle Scholar
  11. 11.
    Garau, M., Slater, M., Bee, S., Sasse, M.: The impact of eye gaze on communication using humanoid avatars. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 309–316. ACM (2001)Google Scholar
  12. 12.
    Glenberg, A.M., Schroeder, J.L., Robertson, D.A.: Averting the gaze disengages the environment and facilitates remembering. Memory & Cognition 26(4), 651–658 (1998)CrossRefGoogle Scholar
  13. 13.
    Heylen, D., Van Es, I., Van Dijk, E., Nijholt, A., van Kuppevelt, J., Dybkjaer, L., Bernsen, N.: Experimenting with the gaze of a conversational agent. In: Proceedings of the International CLASS Workshop on Natural, Intelligent and Effective Interaction in Multimodal Dialogue Systems, pp. 93–100. Kluwer Academic Publishers (2005)Google Scholar
  14. 14.
    Kendon, A.: Some functions of gaze-direction in social interaction. Acta Psychologica 26(1), 22–63 (1967)CrossRefGoogle Scholar
  15. 15.
    Lee, S., Badler, J., Badler, N.: Eyes alive. ACM Transactions on Graphics (TOG), 637–644 (2002)Google Scholar
  16. 16.
    Moon, Y.: Intimate exchanges: Using computers to elicit self-disclosure from consumers. Journal of Consumer Research 26(4), 323–339 (2000)CrossRefGoogle Scholar
  17. 17.
    Pelachaud, C., Bilvi, M.: Modelling gaze behavior for conversational agents. In: Rist, T., Aylett, R.S., Ballin, D., Rickel, J. (eds.) IVA 2003. LNCS (LNAI), vol. 2792, pp. 93–100. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Phelps, F.G., Doherty-Sneddon, G., Warnock, H.: Helping children think: Gaze aversion and teaching. British Journal of Developmental Psychology 24(3), 577–588 (2006)CrossRefGoogle Scholar
  19. 19.
    Shiwa, T., Kanda, T., Imai, M., Ishiguro, H., Hagita, N.: How quickly should communication robots respond? In: Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, pp. 153–160. IEEE (2008)Google Scholar
  20. 20.
    Wang, N., Gratch, J.: Don’t just stare at me! In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2010)Google Scholar
  21. 21.
    Wiemann, J.M., Knapp, M.L.: Turn-taking in conversations. Journal of Communication 25(2), 75–92 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sean Andrist
    • 1
  • Bilge Mutlu
    • 1
  • Michael Gleicher
    • 1
  1. 1.Department of Computer SciencesUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations