Impact of Varying Vocabularies on Controlling Motion of a Virtual Actor

  • Klaus Förger
  • Timo Honkela
  • Tapio Takala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8108)

Abstract

An ideal verbally controlled virtual actor would allow the same interaction as instructing a real actor with a few words. Our goal is to create virtual actors that can be controlled with natural language instead of a predefined set of commands. In this paper, we present results related to a questionnaire where people described videos of human locomotion using verbs and modifiers. The verbs were used almost unanimously for many motions, while modifiers had more variation. The descriptions from only one person were found to cover less than half of the vocabulary of other participants. Further analysis of the vocabularies against the numerical descriptors calculated from the captured motions shows that verbs appeared in closed areas while modifiers could be scattered to disconnected clusters. Based on these findings, we propose modeling verbs with a hierarchical vocabulary and modifiers as transitions in the space defined by the numerical qualities of motions.

Keywords

motion capture natural language virtual actors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahad, M., Tan, J., Kim, H., Ishikawa, S.: Action dataset - A survey. In: Proc. of SICE Annual Conference 2011 (SICE 2011), pp. 1650–1655 (2011)Google Scholar
  2. 2.
    Förger, K., Takala, T., Pugliese, R.: Authoring Rules for Bodily Interaction: From Example Clips to Continuous Motions. In: Nakano, Y., Neff, M., Paiva, A., Walker, M. (eds.) IVA 2012. LNCS, vol. 7502, pp. 341–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Blumberg, B., Galyean, T.: Multi-level direction of autonomous creatures for real- time virtual environments. In: Mair, S.G., Cook, R. (eds.) Proc. of SIGGRAPH 1995, pp. 47–54. ACM, New York (1995)Google Scholar
  4. 4.
    Perlin, K., Goldberg, A.: Improv: a system for scripting interactive actors in virtual worlds. In: Proc. of SIGGRAPH 1996, pp. 205–216. ACM, New York (1996)Google Scholar
  5. 5.
    Vilhjálmsson, H.H., et al.: The behavior markup language: Recent developments and challenges. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 99–111. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Hachimura, K., Takashina, K., Yoshimura, M.: Analysis and evaluation of dancing movement based on LMA. In: IEEE International Workshop on Robot and Human Interactive Communication 2005 (ROMAN 2005), pp. 294–299. IEEE (2005)Google Scholar
  7. 7.
    Talbot, C., Youngblood, G.: Spatial Cues in Hamlet. In: Nakano, Y., Neff, M., Paiva, A., Walker, M. (eds.) IVA 2012. LNCS, vol. 7502, pp. 252–259. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Honkela, T.: Raitio, j., Lagus, K., Nieminen, I., Honkela, N., Pantzar, M.: Subjects on objects in contexts: Using GICA method to quantify epistemological subjectivity. In: Proc. of International Joint Conference on Neural Networks (IJCNN 2012), pp. 2875–2883 (2012)Google Scholar
  9. 9.
    Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)CrossRefGoogle Scholar
  10. 10.
    Vondrick, C., Patterson, D., Ramanan, D.: Efficiently Scaling up Crowdsourced Video Annotation. International Journal of Computer Vision 101(1), 184–204 (2012)CrossRefGoogle Scholar
  11. 11.
    Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and Adverbs: Multidimensional Motion Interpolation Using Radial Basis Functions. IEEE Computer Graphics and Applications 18(5), 32–40 (1998)CrossRefGoogle Scholar
  12. 12.
    Kovar, L., Gleicher, M.: Automated Extraction and Parameterization of Motions in Large Data Sets. In: Marks, J. (ed.) Proc. of SIGGRAPH 2004, pp. 559–568. ACM, New York (2004)Google Scholar
  13. 13.
    Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Computer Graphics 19(3), 245–254 (1985)CrossRefGoogle Scholar
  14. 14.
    Lindén, K., Carlson, L.: FinnWordNet - WordNet på finska via översättning (In English: FinnWordNet - Finnish WordNet by Translation). LexicoNordica - Nordic Journal of Lexicography 17, 119–140 (2010)Google Scholar
  15. 15.
    Bernhardt, D., Robinson, P.: Detecting affect from non-stylised body motions. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 59–70. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Klaus Förger
    • 1
  • Timo Honkela
    • 2
  • Tapio Takala
    • 1
  1. 1.Department of Media TechnologyAalto UniversityEspooFinland
  2. 2.Department of Information and Computer Science, School of ScienceAalto UniversityEspooFinland

Personalised recommendations