Distributed Motion Synchronisation Control of Humanoid Arms

  • Muhammad Nasiruddin Mahyuddin
  • Guido Herrmann
Part of the Communications in Computer and Information Science book series (CCIS, volume 376)


A novel distributed adaptive control algorithm of a pair of humanoid robot arm system (Bristol-Elumotion-Robotic-Torso II (BERT II)) is proposed, analysed and simulated. Two humanoid arms are subjected to a distributed synchronisation control with a virtual leader-following trajectory to be followed, serving a potential application for a smooth cooperative task. The approach presented here is inspired by multi-agent theory. Graph theoretical concept such as Laplacian matrix is used to represent mutual communication between the two arms (regarded as agent nodes) with one of the arm ‘pinned’ to a virtual leader (leader node). The stability of the proposed algorithm is analysed through Lyapunov technique. The algorithm features a sliding-mode term based adaptive law that captures directly the parameter estimation error. An auxiliary filtered regression vector and filtered computed torque is introduced. This allows the definition of another auxiliary matrix, a filtered regression matrix, which facilitates the introduction of the sliding term into the adaptation law. Parameter error convergence to zero can be guaranteed within finite-time with a Persistent-Excitation (PE) or Sufficient Richness condition for the virtual leader’s trajectory.


Adaptive control Robotic Arm Parameter Estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, G., Lewis, F.: Distributed adaptive controller design for the unknown networked lagrangian systems. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 6698–6703 (December 2010)Google Scholar
  2. 2.
    Cheng, L., Hou, Z.G., Tan, M.: Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. In: 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 2712–2717 (October 2008),
  3. 3.
    Das, A., Lewis, F.L.: Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. International Journal of Robust and Nonlinear Control (2010)Google Scholar
  4. 4.
    Feng, G.: A new adaptive control algorithm for robot manipulators in task space. IEEE Transactions on Robotics and Automation 11(3), 457–462 (1995)CrossRefGoogle Scholar
  5. 5.
    Hemami, A.: Kinematics of two-arm robots. IEEE Journal on Robotics and Automation 2(4), 225–228 (1986), CrossRefGoogle Scholar
  6. 6.
    Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44(3), 846–850 (2008), MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006), MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hou, Z.G., Cheng, L., Tan, M., Wang, X.: Distributed Adaptive Coordinated Control of Multi-Manipulator Systems Using Neural Networks, pp. 49–69. Springer, London (2010), Google Scholar
  9. 9.
    Jean, J.H., Fu, L.C.: An adaptive control scheme for coordinated multimanipulator systems. IEEE Transactions on Robotics and Automation 9(2), 226–231 (1993), CrossRefGoogle Scholar
  10. 10.
    Koivo, A.: Adaptive position-velocity-force control of two manipulators. In: 1985 24th IEEE Conference on Decision and Control, vol. 4, pp. 1529–1532. IEEE (December 1985),
  11. 11.
    Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control; Theory and Practice. Marcel Dekker, 2nd edn. (2004)Google Scholar
  12. 12.
    Liu, Y.H., Arimoto, S., Parra-Vega, V., Kitagaki, K.: Decentralized adaptive control of multiple manipulators in co-operations. International Journal of Control 67(5), 649–674 (1997),||D404A21C5BB053405B1A640AFFD44AE3Google Scholar
  13. 13.
    Mahyuddin, M.N., Herrmann, G., Khan, S.G.: A novel adaptive control algorithm in application to a humanoid robot arm. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) TAROS-FIRA 2012. LNCS, vol. 7429, pp. 25–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Mahyuddin, M.N., Herrmann, G., Na, J., Lewis, F.L.: Finite-time adaptive distributed control for double integrator leader-agent synchronisation. In: 2012 IEEE International Symposium on Intelligent Control, ISIC, pp. 714–720 (October 2012)Google Scholar
  15. 15.
    Naniwa, T., Arimoto, S., Vega, V.P.: A model-based adaptive control scheme for coordinated control of multiple manipulators. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1994, pp. 695–702. IEEE (1994),
  16. 16.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE 95(1), 215–233 (2007), CrossRefGoogle Scholar
  17. 17.
    Qu, Z.: Cooperative Control of Dynamical Systems Cooperative Control of Dynamical Systems. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  18. 18.
    Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control 50(5), 655–661 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Slotine, J.J.: Adaptive manipulator control: A case study. IEEE Transactions on Automatic Control 33(11), 995–1003 (1988), zbMATHCrossRefGoogle Scholar
  20. 20.
    Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley (1989)Google Scholar
  21. 21.
    Sun, D., Mills, J.: Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Transactions on Robotics and Automation 18(4), 498–510 (2002), CrossRefGoogle Scholar
  22. 22.
    Tarn, T., Bejczy, A., Yun, X.: Design of dynamic control of two cooperating robot arms: Closed chain formulation. Institute of Electrical and Electronics Engineers (1987),
  23. 23.
    Uchiyama, M., Dauchez, P.: Hybrid Position/Force control for coordination of a two-arm robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, North Carolina, U.S.A., pp. 1242–1247 (1987)Google Scholar
  24. 24.
    Wen, J.: Motion and force control of multiple robotic manipulators. Automatica 28(4), 729–743 (1992), MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Yoshikawa, T., Sugie, T., Tanaka, M.: Dynamic hybrid position/Force control of robot manipulators–Controller design and experiment. In: Proceedings of the 1987 IEEE International Conference on Robotics and Automation, pp. 2005–2010 (1987),
  26. 26.
    Zheng, Y., Luh, J.S.: Control of two coordinated robots in motion. In: 1985 24th IEEE Conference on Decision and Control, pp. 1761–1766. IEEE (December 1985),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Muhammad Nasiruddin Mahyuddin
    • 1
  • Guido Herrmann
    • 1
  1. 1.Bristol Robotic Laboratory and Department of Mechanical EngineeringUniversity of BristolBristolUK

Personalised recommendations