Advertisement

On the Implementation of a Multiple Output Algorithm for Defeasible Argumentation

  • Teresa Alsinet
  • Ramón Béjar
  • Lluis Godo
  • Francesc Guitart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8078)

Abstract

In a previous work we defined a recursive warrant semantics for Defeasible Logic Programming based on a general notion of collective conflict among arguments. The main feature of this recursive semantics is that an output of a program is a pair consisting of a set of warranted and a set of blocked formulas. A program may have multiple outputs in case of circular definitions of conflicts among arguments. In this paper we design an algorithm for computing each output and we provide an experimental evaluation of the algorithm based on two SAT encodings defined for the two main combinatorial subproblems that arise when computing warranted and blocked conclusions for each output.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alsinet, T., Béjar, R., Godo, L.: A characterization of collective conflict for defeasible argumentation. In: COMMA 2010, pp. 27–38 (2010)Google Scholar
  2. 2.
    Alsinet, T., Béjar, R., Godo, L., Guitart, F.: Maximal ideal recursive semantics for defeasible argumentation. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 96–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Alsinet, T., Béjar, R., Godo, L., Guitart, F.: Using answer set programming for an scalable implementation of defeasible argumentation. In: ICTAI 2012, pp. 1016–1021 (2012)Google Scholar
  4. 4.
    Amgoud, L.: Postulates for logic-based argumentation systems. In: ECAI 2012 Workshop WL4AI, pp. 59–67 (2012)Google Scholar
  5. 5.
    Cecchi, L., Fillottrani, P., Simari, G.: On the complexity of DeLP through game semantics. In: NMR 2006, pp. 386–394 (2006)Google Scholar
  6. 6.
    Chesñevar, C.I., Simari, G.R., Godo, L.: Computing dialectical trees efficiently in possibilistic defeasible logic programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 158–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    García, A., Simari, G.R.: Defeasible Logic Programming: An Argumentative Approach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pollock, J.L.: A recursive semantics for defeasible reasoning. In: Rahwan, Simari (eds.) Argumentation in Artificial Intelligence, pp. 173–198. Springer (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Teresa Alsinet
    • 1
  • Ramón Béjar
    • 1
  • Lluis Godo
    • 2
  • Francesc Guitart
    • 1
  1. 1.Department of Computer ScienceUniversity of LleidaLleidaSpain
  2. 2.Artificial Intelligence Research Institute (IIIA-CSIC)BarcelonaSpain

Personalised recommendations