Advertisement

On the Implementation of a Fuzzy DL Solver over Infinite-Valued Product Logic with SMT Solvers

  • Teresa Alsinet
  • David Barroso
  • Ramón Béjar
  • Félix Bou
  • Marco Cerami
  • Francesc Esteva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8078)

Abstract

In this paper we explain the design and preliminary implementation of a solver for the positive satisfiability problem of concepts in a fuzzy description logic over the infinite-valued product logic. This very solver also answers 1-satisfiability in quasi-witnessed models. The solver works by first performing a direct reduction of the problem to a satisfiability problem of a quantifier free boolean formula with non-linear real arithmetic properties, and secondly solves the resulting formula with an SMT solver. We show that the satisfiability problem for such formulas is still a very challenging problem for even the most advanced SMT solvers, and so it represents an interesting problem for the community working on the theory and practice of SMT solvers.

Keywords

description logics fuzzy product logic SMT solvers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F.: Tableau algorithms for description logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 1–18. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Cerami, M., Esteva, F., Bou, F.: Decidability of a description logic over infinite-valued product logic. In: Proceedings of KR 2010 (2010)Google Scholar
  3. 3.
    Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under łukasiewicz t-norm. Information Sciences 227, 1–21 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cignoli, R., Torrens, A.: An algebraic analysis of product logic. Multiple-Valued Logic 5, 45–65 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Haarslev, V., Sebastiani, R., Vescovi, M.: Automated Reasoning in \(\mathcal{ALCQ}\) via SMT. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 283–298. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Systems 154(1), 1–15 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive Datalog programs. In: Proceedings of KR 2004, pp. 152–162 (2004)Google Scholar
  9. 9.
    Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. In: Proceedings of EUSFLAT 2007, pp. 213–220 (2007)Google Scholar
  10. 10.
    Vidal, A., Bou, F., Godo, L.: An SMT-based solver for continuous t-norm based logics. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 633–640. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Teresa Alsinet
    • 1
  • David Barroso
    • 1
  • Ramón Béjar
    • 1
  • Félix Bou
    • 2
    • 3
  • Marco Cerami
    • 4
  • Francesc Esteva
    • 3
  1. 1.Department of Computer ScienceUniversity of LleidaLleidaSpain
  2. 2.Faculty of MathematicsUniversity of BarcelonaBarcelonaSpain
  3. 3.Artificial Intelligence Research Institute (IIIA-CSIC)BarcelonaSpain
  4. 4.Department of Computer SciencePalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations