Aggregate Count Queries in Probabilistic Spatio-temporal Databases

  • John Grant
  • Cristian Molinaro
  • Francesco Parisi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8078)


The SPOT database concept was defined several years ago to provide a declarative framework for probabilistic spatio-temporal databases where even the probabilities are uncertain. Earlier work on SPOT focused on the efficient processing of selection queries and updates. In this paper, we deal with aggregate count queries. First, we propose three alternative semantics for the meaning of such a query. Then, we provide polynomial time algorithms for answering count queries under the various semantics and discuss complexity issues.


Polynomial Time Algorithm Query Region Probabilistic Database Aggregate Query Alternative Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afrati, F.N., Kolaitis, P.G.: Answering aggregate queries in data exchange. In: Proc. PODS, pp. 129–138 (2008)Google Scholar
  2. 2.
    Agarwal, D., Chen, D., Lin, L.-J., Shanmugasundaram, J., Vee, E.: Forecasting high-dimensional data. In: Proc. SIGMOD, pp. 1003–1012 (2010)Google Scholar
  3. 3.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. Journal of Computer and System Sciences 66(1), 207–243 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akdere, M., Cetintemel, U., Riondato, M., Upfal, E., Zdonik, S.: The case for predictive database systems: Opportunities and challenges. In: Proc. CIDR, pp. 167–174 (2011)Google Scholar
  5. 5.
    Arenas, M., Bertossi, L.E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar aggregation in inconsistent databases. Theor. Comput. Sci. 296(3), 405–434 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: Uldbs: Databases with uncertainty and lineage. In: Proc. VLDB, pp. 953–964 (2006)Google Scholar
  7. 7.
    Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. VLDB Journal 15, 211–228 (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, Y.F., Qin, X.L., Liu, L.: Uncertain distance-based range queries over uncertain moving objects. J. Comput. Sci. Technol. 25(5), 982–998 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chung, B.S.E., Lee, W.C., Chen, A.L.P.: Processing probabilistic spatio-temporal range queries over moving objects with uncertainty. In: Proc. EDBT, pp. 60–71 (2009)Google Scholar
  10. 10.
    Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic spatial queries on existentially uncertain data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Doder, D., Grant, J., Ognjanović, Z.: Probabilistic logics for objects located in space and time. J. of Logic and Computation 23(3), 487–515 (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Duan, S., Babu, S.: Processing forecasting queries. In: Proc. VLBD (2007)Google Scholar
  13. 13.
    Flesca, S., Furfaro, F., Parisi, F.: Range-consistent answers of aggregate queries under aggregate constraints. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 163–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Ge, T., Zdonik, S.: A skip-list aproach for efficiently processing forecasting queries. In: Proc. VLDB (2008)Google Scholar
  15. 15.
    Gomez, L.I., Kuijpers, B., Vaisman, A.A.: Aggregate languages for moving object and places of interest. In: Proc. SAC, pp. 857–862 (2008)Google Scholar
  16. 16.
    Grant, J., Parisi, F., Parker, A., Subrahmanian, V.S.: An agm-style belief revision mechanism for probabilistic spatio-temporal logics. Artif. Intell. 174(1), 72–104 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grant, J., Parisi, F., Subrahmanian, V.S.: Research in Probabilistic Spatiotemporal Databases: The SPOT Framework. In: Ma, Z., Yan, L. (eds.) Advances in Probabilistic Databases. STUDFUZZ, vol. 340, pp. 1–22. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Hammel, T., Rogers, T.J., Yetso, B.: Fusing live sensor data into situational multimedia views. In: Proc. MIS, pp. 145–156 (2003)Google Scholar
  20. 20.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proc. PODS, pp. 261–272 (1999)Google Scholar
  21. 21.
    Lopez, I.F.V., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: A survey. IEEE TKDE 17(2), 271–286 (2005)Google Scholar
  22. 22.
    Mittu, R., Ross, R.: Building upon the coalitions agent experiment (coax) - integration of multimedia information in gccs-m using impact. In: Proc. MIS, pp. 35–44 (2003)Google Scholar
  23. 23.
    Parisi, F., Parker, A., Grant, J., Subrahmanian, V.S.: Scaling cautious selection in spatial probabilistic temporal databases. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 307–340. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Parisi, F., Sliva, A., Subrahmanian, V.S.: Embedding forecast operators in databases. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 373–386. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Parisi, F., Sliva, A., Subrahmanian, V.S.: A temporal database forecasting algebra. Int. J. of Approximate Reasoning 54(7), 827–860 (2013)CrossRefGoogle Scholar
  26. 26.
    Parker, A., Subrahmanian, V.S., Grant, J.: A logical formulation of probabilistic spatial databases. IEEE TKDE, 1541–1556 (2007)Google Scholar
  27. 27.
    Parker, A., Infantes, G., Grant, J., Subrahmanian, V.S.: Spot databases: Efficient consistency checking and optimistic selection in probabilistic spatial databases. IEEE TKDE 21(1), 92–107 (2009)Google Scholar
  28. 28.
    Parker, A., Infantes, G., Grant, J., Subrahmanian, V.S.: An AGM-based belief revision mechanism for probabilistic spatio-temporal logics. In: Proc. AAAI (2008)Google Scholar
  29. 29.
    Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present, and anticipated future positions of moving objects. ACM Trans. Database Syst. 31(1), 255–298 (2006)CrossRefGoogle Scholar
  30. 30.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches to the indexing of moving object trajectories. In: Proc. VLDB (2000)Google Scholar
  31. 31.
    Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. Journal of the ACM 52(1), 54–101 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Southey, F., Loh, W., Wilkinson, D.F.: Inferring complex agent motions from partial trajectory observations. In: Proc. IJCAI, pp. 2631–2637 (2007)Google Scholar
  33. 33.
    Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2011)Google Scholar
  34. 34.
    Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In: Proc. VLDB, pp. 790–801 (2003)Google Scholar
  35. 35.
    Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: Proc. VLDB, pp. 922–933 (2005)Google Scholar
  36. 36.
    Yang, B., Lu, H., Jensen, C.S.: Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space. In: Proc. EDBT, pp. 335–346 (2010)Google Scholar
  37. 37.
    Zhang, M., Chen, S., Jensen, C.S., Ooi, B.C., Zhang, Z.: Effectively indexing uncertain moving objects for predictive queries. PVLDB 2(1), 1198–1209 (2009)Google Scholar
  38. 38.
    Zheng, K., Trajcevski, G., Zhou, X., Scheuermann, P.: Probabilistic range queries for uncertain trajectories on road networks. In: Proc. EDBT, pp. 283–294 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John Grant
    • 1
  • Cristian Molinaro
    • 2
  • Francesco Parisi
    • 2
  1. 1.Towson University and University of Maryland at College ParkUSA
  2. 2.DIMES DepartmentUniversità della CalabriaItaly

Personalised recommendations