What Can Argumentation Do for Inconsistent Ontology Query Answering?

  • Madalina Croitoru
  • Srdjan Vesic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8078)


The area of inconsistent ontological knowledge base query answering studies the problem of inferring from an inconsistent ontology. To deal with such a situation, different semantics have been defined in the literature (e.g. AR, IAR, ICR). Argumentation theory can also be used to draw conclusions under inconsistency. Given a set of arguments and attacks between them, one applies a particular semantics (e.g. stable, preferred, grounded) to calculate the sets of accepted arguments and conclusions. However, it is not clear what are the similarities and differences of semantics from ontological knowledge base query answering and semantics from argumentation theory. This paper provides the answer to that question. Namely, we prove that: (1) sceptical acceptance under stable and preferred semantics corresponds to ICR semantics; (2) universal acceptance under stable and preferred semantics corresponds to AR semantics; (3) acceptance under grounded semantics corresponds to IAR semantics. We also prove that the argumentation framework we define satisfies the rationality postulates (e.g. consistency, closure).


Argumentation Theory Argumentation Framework Conjunctive Query Query Answering Existential Closure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amgoud, L., Besnard, P.: Bridging the gap between abstract argumentation systems and logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 12–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation frameworks. Journal of Automated Reasoning 29 (2), 125–169 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baget, J.-F., Mugnier, M.-L.: The Complexity of Rules and Constraints. JAIR 16, 425–465 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Baget, J.-F., Mugnier, M.-L., Rudolph, S., Thomazo, M.: Walking the complexity lines for generalized guarded existential rules. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 712–717 (2011)Google Scholar
  5. 5.
    Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: Proceedings of the 9th Conference on Uncertainty in Artificial intelligence (UAI 1993), pp. 411–419 (1993)Google Scholar
  6. 6.
    Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008)Google Scholar
  7. 7.
    Bex, F.J., Modgil, S.J., Prakken, H., Reed, C.: On logical specifications of the argument interchange format. Journal of Logic and Computation (2013)Google Scholar
  8. 8.
    Bienvenu, M.: On the complexity of consistent query answering in the presence of simple ontologies. In: Proc. of AAAI (2012)Google Scholar
  9. 9.
    Black, E., Hunter, A., Pan, J.Z.: An argument-based approach to using multiple ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 68–79. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intelligence Journal 171 (5-6), 286–310 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based entailment. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1443–1448 (1995)Google Scholar
  12. 12.
    Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation and Reasoning—Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge Processing. Springer (2009)Google Scholar
  13. 13.
    Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., Willmott, S.: Towards an argument interchange format. Knowledge Engineering Review 21(4), 293–316 (2006)CrossRefGoogle Scholar
  14. 14.
    Dix, J., Parsons, S., Prakken, H., Simari, G.R.: Research challenges for argumentation. Computer Science - R&D 23(1), 27–34 (2009)Google Scholar
  15. 15.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence Journal 77, 321–357 (1995)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Proc. of RR, pp. 103–117 (2010)Google Scholar
  17. 17.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002 (2002)Google Scholar
  18. 18.
    Modgil, S.J., Prakken, H.: A general account of argumentation with preferences. Artificial Intelligence Journal (2013)Google Scholar
  19. 19.
    Rahwan, I., Zablith, F., Reed, C.: Laying the foundations for a world wide argument web. Artificial Intelligence 171(10-15), 897–921 (2007)CrossRefGoogle Scholar
  20. 20.
    Vesic, S.: Maxi-consistent operators in argumentation. In: 20th European Conference on Artificial Intelligence (ECAI 2012), pp. 810–815 (2012)Google Scholar
  21. 21.
    Vesic, S., van der Torre, L.: Beyond maxi-consistent argumentation operators. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 424–436. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Madalina Croitoru
    • 1
  • Srdjan Vesic
    • 2
  1. 1.INRIA, LIRMM, Univ. Montpellier 2France
  2. 2.CRIL - CNRSFrance

Personalised recommendations