Advertisement

A New Class of Lineage Expressions over Probabilistic Databases Computable in P-Time

  • Batya Kenig
  • Avigdor Gal
  • Ofer Strichman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8078)

Abstract

We study the problem of query evaluation over tuple-independent probabilistic databases. We define a new characterization of lineage expressions called disjoint branch acyclic, and show this class to be computed in P-time. Specifically, this work extends the class of lineage expressions for which evaluation can be performed in PTIME. We achieve this extension with a novel usage of junction trees to compute the probability of these lineage expressions.

Keywords

Maximal Clique Intersection Graph Chordal Graph Query Evaluation Primal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM 30, 479–513 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benjelloun, O., Sarma, A., Halevy, A., Theobald, M., Widom, J.: Databases with uncertainty and lineage. VLDB Journal 17(2), 243–264 (2008)CrossRefGoogle Scholar
  3. 3.
    Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: VLDB, pp. 71–81 (1987)Google Scholar
  4. 4.
    Chaplick, S.: Path Graphs and PR-trees. PhD thesis, Charles University, Prague (January 2012)Google Scholar
  5. 5.
    Dalvi, N., Schnaitter, K., Suciu, D.: Computing query probability with incidence algebras. In: PODS, pp. 203–214. ACM (2010)Google Scholar
  6. 6.
    Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB Journal 16, 523–544 (2007)CrossRefGoogle Scholar
  7. 7.
    Dietz, P.F.: Intersection Graph Algorithms. PhD thesis, Cornell University (August 1984)Google Scholar
  8. 8.
    Duris, D.: Some characterizations of γ and β-acyclicity of hypergraphs. Inf. Process. Lett. 112(16), 617–620 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems 15, 32–66 (1994)CrossRefGoogle Scholar
  10. 10.
    Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory, Series B 16(1), 47–56 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gavril, F.: A recignition algorithm for the intersection graphs of directed paths in directed trees. Discrete Mathematics 13, 237–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Golumbic, M., Mintz, A., Rotics, U.: Factoring and recognition of read-once functions using cographs and normality. In: DAC (June 2001)Google Scholar
  13. 13.
    Jha, A.K., Suciu, D.: Knowledge compilation meets database theory: compiling queries to decision diagrams. In: ICDT, pp. 162–173 (2011)Google Scholar
  14. 14.
    Kenig, B., Gal, A., Strichman, O.: A new class of lineage expressions over probabilistic databases computable in p-time. Technical Report IE/IS-2013-01, Technion – Israel Institute of Technology (January 2013), http://ie.technion.ac.il/tech_reports/1365582056_TechReportSUM2013.pdf
  15. 15.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press (August 2009)Google Scholar
  16. 16.
    Olteanu, D., Huang, J.: Using OBDDs for efficient query evaluation on probabilistic databases. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 326–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Olteanu, D., Huang, J., Koch, C.: Approximate confidence computation in probabilistic databases. In: ICDE, pp. 145–156 (2010)Google Scholar
  18. 18.
    Roy, S., Perduca, V., Tannen, V.: Faster query answering in probabilistic databases using read-once functions. In: ICDT, pp. 232–243 (2011)Google Scholar
  19. 19.
    Sen, P., Deshpande, A., Getoor, L.: Read-once functions and query evaluation in probabilistic databases. PVLDB 3(1), 1068–1079 (2010)Google Scholar
  20. 20.
    Tarjan, R.E., Yannakakis, M.: Addendum: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 14(1), 254–255 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Batya Kenig
    • 1
  • Avigdor Gal
    • 1
  • Ofer Strichman
    • 1
  1. 1.Technion, Israel Instutute of TechnologyHaifaIsrael

Personalised recommendations