Clocks for Functional Programs

  • Jörg Endrullis
  • Dimitri Hendriks
  • Jan Willem Klop
  • Andrew Polonsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8106)


Of the current authors the oldest one remembers with fondness numerous meetings with Rinus from the ancient times of the European Basic Research Actions and from personal tutorials in Nijmegen about λ-terms, term graphs and processes on the one hand, and the practice of functional programming in the Clean environment on the other hand.


Normal Form Recursive Call Reduction Rule Functional Program Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AK95]
    Ariola, Z.M., Klop, J.W.: Equational Term Graph Rewriting. Technical Report IR-391, Vrije Universiteit Amsterdam (1995),
  2. [Bar84]
    Barendregt, H.P.: The Lambda Calculus. Its Syntax and Semantics, revised edition. Studies in Logic and The Foundations of Mathematics, vol. 103. North-Holland (1984)Google Scholar
  3. [BDS13]
    Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Perspectives in Logic. Cambridge University Press (2013)Google Scholar
  4. [Ber85]
    Bercovici, I.: Unsolvable Terms in Typed Lambda Calculus with Fix-Point Operators. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 16–22. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  5. [BKdV00]
    Bethke, I., Klop, J.W., de Vrijer, R.C.: Descendants and Origins in Term Rewriting. Information and Computation 159(1-2), 59–124 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BN98]
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Google Scholar
  7. [CC96]
    Coquand, C., Coquand, T.: On the Definition of Reduction for Infinite Terms. Comptes Rendus de l’Académie des Sciences. Série I 323(5), 553–558 (1996)MathSciNetzbMATHGoogle Scholar
  8. [dMJB+]
    de Mast, P., Jansen, J.-M., Bruin, D., Fokker, J., Koopman, P., Smetsers, S., van Eekelen, M., Plasmeijer, R.: Functional Programming in CleanGoogle Scholar
  9. [EGKvO11]
    Endrullis, J., Grabmayer, C., Klop, J.W., van Oostrom, V.: On Equal μ-Terms. Theoretical Computer Science 412(28), 3175–3202 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [EHH+13]
    Endrullis, J., Hansen, H.H., Hendriks, D., Polonsky, A., Silva, A.: A Coinductive Treatment of Infinitary Term Rewriting (submitted, 2013)Google Scholar
  11. [EHK10]
    Endrullis, J., Hendriks, D., Klop, J.W.: Modular Construction of Fixed Point Combinators and Clocked Böhm Trees. In: Proc. Symp. on Logic in Computer Science (LICS 2010), pp. 111–119 (2010)Google Scholar
  12. [EHK12]
    Endrullis, J., Hendriks, D., Klop, J.W.: Highlights in Infinitary Rewriting and Lambda Calculus. Theoretical Computer Science 464, 48–71 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [EHKP12]
    Endrullis, J., Hendriks, D., Klop, J.W., Polonsky, A.: Discriminating Lambda-Terms using Clocked Böhm Trees. Logical Methods in Computer Science (in print, 2012)Google Scholar
  14. [EHKP13]
    Endrullis, J., Hendriks, D., Klop, J.W., Polonsky, A.: Clocked Lambda Calculus. Mathematical Structures in Computer Science (accepted for publication, 2013)Google Scholar
  15. [EP13]
    Endrullis, J., Polonsky, A.: Infinitary Rewriting Coinductively. In: Proc. Types for Proofs and Programs (TYPES 2012). LIPIcs, vol. 19, pp. 16–27. Schloss Dagstuhl (2013)Google Scholar
  16. [HS08]
    Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators. Cambridge University Press (2008)Google Scholar
  17. [Hut07]
    Hutton, G.: Programming in Haskell. Cambridge University Press (2007)Google Scholar
  18. [Int97]
    Intrigila, B.: Non-Existent Statman’s Double Fixed Point Combinator Does Not Exist, Indeed. Information and Computation 137(1), 35–40 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [KdV05]
    Klop, J.W., de Vrijer, R.C.: Infinitary Normalization. In: We Will Show Them: Essays in Honour of Dov Gabbay, vol. 2, pp. 169–192. College Publ. (2005), Techn. report:
  20. [KS09]
    Ketema, J., Simonsen, J.G.: Infinitary Combinatory Reduction Systems: Confluence. Logical Methods in Computer Science 5(4), 1–29 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [NI89]
    Naoi, T., Inagaki, Y.: Algebraic Semantics and Complexity of Term Rewriting Systems. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 311–325. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  22. [Pla84]
    Platek, R.A.: Foundations of Recursion Theory. University Microfilms (1984)Google Scholar
  23. [Plo77]
    Plotkin, G.D.: Lcf considered as a programming language. Theor. Comput. Sci. 5(3), 223–255 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Smu85]
    Smullyan, R.: To Mock a Mockingbird, and Other Logic Puzzles: Including an Amazing Adventure in Combinatory Logic. Alfred A. Knopf, New York (1985)Google Scholar
  25. [Sta02]
    Statman, R.: On The Lambda Y Calculus. In: Proc. Symp. on Logic in Computer Science (LICS 2002), pp. 159–166. IEEE (2002)Google Scholar
  26. [Ter03]
    Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörg Endrullis
    • 1
  • Dimitri Hendriks
    • 1
  • Jan Willem Klop
    • 1
    • 2
  • Andrew Polonsky
    • 1
    • 3
  1. 1.Department of Computer ScienceVU University AmsterdamThe Netherlands
  2. 2.Centrum Wiskunde & Informatica (CWI)The Netherlands
  3. 3.Radboud Universiteit NijmegenThe Netherlands

Personalised recommendations