Simulation-Based Design of Production Networks for Manufacturing of Personalised Products

  • Dimitris Mourtzis
  • Michalis Doukas
  • Foivos Psarommatis
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 397)


This paper presents a method for the design of manufacturing networks focused on the production of personalised goods. The method, which is implemented to a software tool, comprises of a mechanism for the generation and evaluation of manufacturing network alternative configurations. An exhaustive search and an intelligent search algorithm are used, for the identification of efficient configurations. Multiple conflicting user-defined criteria are used in the evaluation, including cost, time, CO2 emissions, energy consumption and quality. Discrete Event Simulation models of manufacturing networks are simulated for the calculation of performance indicators of flexibility, throughput and work-in-process, and are used for assessing the performance of centralised and decentralised networks. The results obtained through the exhaustive and intelligent search methods are compared. The applicability of the method is tested on a real-life industrial pilot case utilising data from an automotive manufacturer.


Simulation Planning Decentralisation Personalisation 


  1. 1.
    Ueda, K., Takenaka, T., Váncza, J., Monostori, L.: Value creation and decision-making in sustainable society. CIRP Annals-Mfg. Tech. 58, 681–700 (2009)CrossRefGoogle Scholar
  2. 2.
    The Economist: The Third Industrial Revolution, April 21-27 (2012)Google Scholar
  3. 3.
    Thirumalai, S., Sinha, K.: Customisation of the online purchase process in electronic retailing and customer satisfaction: An online field study. J. of Oper. Mgmt. 29, 477–487 (2011)CrossRefGoogle Scholar
  4. 4.
    Radke, A.M., Tseng, M.M.: A risk management-based approach for inventory planning of engineering-to-order production. CIRP Annals-Mfg. Tech. 61, 387–390 (2012)CrossRefGoogle Scholar
  5. 5.
    Herrmann, I.T., Hauschild, M.Z.: Effects of globalisation on carbon footprints of products. CIRP Annals-Mfg. Tech. 58, 13–16 (2009)CrossRefGoogle Scholar
  6. 6.
    Tolio, T., Urgo, M.: A Rolling Horizon Approach to Plan Outsourcing in Manufacturing-to-Order Environments Affected by Uncertainty. CIRP Annals-Mfg. Tech. 56, 487–490 (2007)CrossRefGoogle Scholar
  7. 7.
    Michalos, G., Makris, S., Mourtzis, D.: An intelligent search algorithm-based method to derive assembly line design alternatives. Int. J. of Comp. Int. Mfg. 25, 211–229 (2012)CrossRefGoogle Scholar
  8. 8.
    Labarthe, O., Espinasse, B., Ferrarini, A., Montreuil, B.: Toward a methodological framework for agent-based modelling and simulation of supply chains in a mass customisation context. Sim. Mod. Pr. and Th. 15, 113–136 (2007)CrossRefGoogle Scholar
  9. 9.
    Persson, F., Araldi, M.: The development of a dynamic supply chain analysis tool: Integration of SCOR and discrete event simulation. Int. J. of Prod. Econ. 121, 574–583 (2009)CrossRefGoogle Scholar
  10. 10.
    Pierreval, H., Bruniaux, R., Caux, C.: A continuous simulation approach for supply chains in the automotive industry. Sim. Mod. Pr. and Th. 15, 185–198 (2007)CrossRefGoogle Scholar
  11. 11.
    Longo, F., Mirabelli, G.: An advanced supply chain management tool based on modelling and simulation. Comp. & Ind. Eng. 54, 570–588 (2008)CrossRefGoogle Scholar
  12. 12.
    Chiang, W.C., Russell, R., Xu, X., Zepeda, D.: A simulation/metaheuristic approach to newspaper production and distribution supply chain problems. Int. J. of Prod. Econ. 121, 752–767 (2009)CrossRefGoogle Scholar
  13. 13.
    Garey, M., Johnson, D.: Computers and Intractability – A Guide to the Theory of NP-Completeness, 1st edn. W.H.Freeman & Co Ltd., New York (1990)zbMATHGoogle Scholar
  14. 14.
    Yoo, T., Cho, H., Yucesan, E.: Hybrid algorithm for discrete event simulation based supply chain optimisation. Exp. Sys. With Appl. 37, 2354–2361 (2010)CrossRefGoogle Scholar
  15. 15.
    Mourtzis, D., Doukas, M., Psarommatis, F.: A multi-criteria evaluation of centralised and decentralised production networks in a highly customer-driven environment. CIRP Annals-Mfg. Tech. 61, 427–430 (2012)CrossRefGoogle Scholar
  16. 16.
    Chryssolouris, G.: Manufacturing Systems - Theory and Practice, 2nd edn. Springer (2006)Google Scholar
  17. 17.
    Chryssolouris, G., Dicke, K., Lee, M.: On the Resources Allocation Problem. Int. J. of Prod. Res. 30, 2773–2795 (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mourtzis, D., Doukas, M., Psarommatis, F.: Design and planning of decentralised production networks under high product variety demand. Procedia CIRP (2012), doi:
  19. 19.
    Liao, C.J., Shyu, C.H.: An Analytical Determination of Lead Time with Normal Demand. Int. J. of Oper. & Prod. Mgmt. 11, 72–78 (1991)CrossRefGoogle Scholar
  20. 20.
    Mourtzis, D., Doukas, M., Psarommatis, F.: Environmental impact of centralised and decentralised production networks in the era of personalisation. Lect. Notes in Prod. Eng, vol. 1, pp. 396–408 (2012), doi:10.1007/978-3-642-30749-2Google Scholar
  21. 21.
    EPA (2010),
  22. 22.
    Alexopoulos, K., Papakostas, N., Mourtzis, D., Gogos, P., Chryssolouris, G.: Quantifying the flexibility of a manufacturing system by applying the transfer function. Int. J. of Comp. Int. Mfg. 20, 538–547 (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Hopp, W.J., Spearman, M.L.: Factory Physics: Foundations of Manufacturing Management, 2nd edn. Richard D. Irwin (1995)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Dimitris Mourtzis
    • 1
  • Michalis Doukas
    • 1
  • Foivos Psarommatis
    • 1
  1. 1.Lab for Manufacturing Systems and Automation (LMS)University of PatrasPatrasGreece

Personalised recommendations