Fides: Lightweight Authenticated Cipher with Side-Channel Resistance for Constrained Hardware

  • Begül Bilgin
  • Andrey Bogdanov
  • Miroslav Knežević
  • Florian Mendel
  • Qingju Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8086)

Abstract

In this paper, we present a novel lightweight authenticated cipher optimized for hardware implementations called Fides. It is an online nonce-based authenticated encryption scheme with authenticated data whose area requirements are as low as 793 GE and 1001 GE for 80-bit and 96-bit security, respectively. This is at least two times smaller than its closest competitors Hummingbird-2 and Grain-128a. While being extremely compact, Fides is both throughput and latency efficient, even in its most serial implementations. This is attained by our novel sponge-like design approach. Moreover, cryptographically optimal 5-bit and 6-bit S-boxes are used as basic nonlinear components while paying a special attention on the simplicity of providing first order side-channel resistance with threshold implementation.

Keywords

Lightweight cryptography authenticated encryption keyed sponge glitch-free masking APN permutation almost bent permutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128 with optional authentication. IJWMC 5(1), 48–59 (2011)CrossRefGoogle Scholar
  2. 2.
    Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Aumasson, J.P., Knellwolf, S., Meier, W.: Heavy Quark for secure AEAD. In: DIAC - Directions in Authenticated Ciphers (2012)Google Scholar
  4. 4.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of all 3 ×3 and 4 ×4 s-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Bogdanov, A.: On unbalanced feistel networks with contracting mds diffusion. Des. Codes Cryptography 59(1-3), 35–58 (2011)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.: Spongent: A Lightweight Hash Function. In: Preneel and Takagi [28], pp. 312–325Google Scholar
  8. 8.
    Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-Based Lightweight Authenticated Encryption. In: 20th International Workshop on Fast Software Encryption – FSE (2013)Google Scholar
  9. 9.
    Borghoff, J., et al.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    CAESAR. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness, http://competitions.cr.yp.to/caesar.html
  11. 11.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for des-likecryptosystems. Des. Codes Cryptography 15(2), 125–156 (1998)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer (2002)Google Scholar
  14. 14.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Dillon, J.F.: APN polynomials: an update. In: International Conference on Finite Fields and Applications - Fq9 (2009)Google Scholar
  16. 16.
    Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The hummingbird-2 lightweight authenticated encryption algorithm. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2 Lightweight Authenticated Encryption Algorithm. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Even, S., Mansour, Y.: A Construction of a Cioher From a Single Pseudorandom Permutation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  19. 19.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer (2011)Google Scholar
  20. 20.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In: Preneel and Takagi [28], pp. 326–341Google Scholar
  21. 21.
  22. 22.
    Knežević, M., Nikov, V., Rombouts, P.: Low-latency encryption – is lightweight = light + wait? In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 426–446. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    NANGATE. The NanGate 45nm Open Cell Library, http://www.nangate.com
  26. 26.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg (2011)MATHGoogle Scholar
  29. 29.
    Saarinen, M.-J.O.: Related-key Attacks Against Full Hummingbird-2. In: Moriai, S. (ed.) Fast Software Encryption. LNCS. Springer (to appear, 2013)Google Scholar
  30. 30.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An Ultra-Lightweight Blockcipher. In: Preneel and Takagi [28], pp. 342–357Google Scholar
  31. 31.
    Yalçın, T., Kavun, E.B.: On the Implementation Aspects of Sponge-based Authenticated Encryption for Pervasive Devices. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 141–157. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Begül Bilgin
    • 1
    • 2
  • Andrey Bogdanov
    • 3
  • Miroslav Knežević
    • 4
  • Florian Mendel
    • 5
  • Qingju Wang
    • 1
    • 6
  1. 1.ESAT/COSIC and iMindsKU LeuvenBelgium
  2. 2.EEMCS-DIESUniversity of TwenteThe Netherlands
  3. 3.Department of MathematicsTechnical University of DenmarkDenmark
  4. 4.NXP SemiconductorsBelgium
  5. 5.IAIKGraz University of TechnologyAustria
  6. 6.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityChina

Personalised recommendations