We present a polylogarithmic local computation matching algorithm which guarantees a (1 - ε)-approximation to the maximum matching in graphs of bounded degree.


Local Computation Algortithms Sublinear Algorithms Approximation Algorithms Maximum Matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Babai, L., Itai, A.: A fast and simple randomized algorithm for the maximal independent set problem. Journal of Algorithms 7, 567–583 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms. In: Proc. 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1132–1139 (2012)Google Scholar
  3. 3.
    Berge, C.: Two theorems in graph theory. Proceedings of the National Academy of Sciences of the United States of America 43(9), 842–844 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Czygrinow, A., Hanckowiak, M.: Distributed algorithm for better approximation of the maximum matching. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 242–251. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hall, P.: On representatives of subsets. J. London Math. Soc. 10(1), 26–30 (1935)Google Scholar
  7. 7.
    Harvey, N.: Algebraic structures and algorithms for matching and matroid problems. In: Proc. 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 531–542 (2006)Google Scholar
  8. 8.
    Hoepman, J.-H., Kutten, S., Lotker, Z.: Efficient distributed weighted matchings on trees. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 115–129. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Hopcroft, J.E., Karp, R.M.: An N 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal matching. Inf. Process. Lett. 22(2), 77–80 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 980–989 (2006)Google Scholar
  12. 12.
    Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate matching. In: Proc. 20th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 129–136 (2008)Google Scholar
  14. 14.
    Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to local computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 653–664. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Mansour, Y., Vardi, S.: Local algorithmic mechanism design. Under submission elsewhereGoogle Scholar
  16. 16.
    Micali, S., Vazirani, V.V.: An \(O(\sqrt{|V|} |E|)\) algorithm for finding maximum matching in general graphs. In: Proc. 21st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 17–27 (1980)Google Scholar
  17. 17.
    Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. In: FOCS, pp. 248–255 (2004)Google Scholar
  18. 18.
    Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–336 (2008)Google Scholar
  20. 20.
    Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: Proc. 2nd Symposium on Innovations in Computer Science (ICS), pp. 223–238 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yishay Mansour
    • 1
  • Shai Vardi
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations