The genus of a graph is a very basic parameter in topological graph theory, that has been the subject of extensive study. Perhaps surprisingly, despite its importance, the problem of approximating the genus of a graph is very poorly understood. It has been shown to be NPcomplete by Thomassen [Tho89], and the best known upper bound for general graphs is an O(n)-approximation that follows by Euler’s characteristic.

We give a polynomial-time pseudo-approximation algorithm for the orientable genus of Hamiltonian graphs. More specifically, on input a graph G of orientable genus g, and a Hamiltonian path in G, our algorithm computes a drawing into a surface of either orientable, or nonorientable genus g O(1).


Hamiltonian Path Local Edge Hamiltonian Graph Elementary Band Primary Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CH11]
    Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing number. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 122–134. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. [Chu11]
    Chuzhoy, J.: An algorithm for the graph crossing number problem. In: STOC, pp. 303–312 (2011)Google Scholar
  3. [CKK97]
    Chen, J., Kanchi, S.P., Kanevsky, A.: A note on approximating graph genus. Inf. Process. Lett. 61(6), 317–322 (1997)MathSciNetCrossRefGoogle Scholar
  4. [CMS11]
    Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and edge planarization. In: SODA, pp. 1050–1069 (2011)Google Scholar
  5. [CS]
    Chekuri, C., Sidiropoulos, A.: Approximating the genus of a graph. ManuscriptGoogle Scholar
  6. [FMR79]
    Filotti, I.S., Miller, G.L., Reif, J.H.: On determining the genus of a graph in O(v O(g)) steps. In: STOC, pp. 27–37 (1979)Google Scholar
  7. [GT01]
    Gross, J.L., Tucker, T.W.: Topological graph theory. Dover Publications (2001)Google Scholar
  8. [Hat02]
    Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)Google Scholar
  9. [HT74]
    Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [KiMR08]
    Ken-ichi, Mohar, B., Reed, B.A.: A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In: FOCS, pp. 771–780 (2008)Google Scholar
  11. [LR99]
    Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [MC08]
    Chimani, M., Hliněný, P., Mutzel, P.: Approximating the crossing number of apex graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 432–434. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. [MM92]
    Malnic, A., Mohar, B.: Generating locally cyclic triangulations of surfaces. Journal of Combinatorial Theory, Series B 56(2), 147–164 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [Moh99]
    Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12(1), 6–26 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. [Moh01]
    Mohar, B.: Face covers and the genus problem for apex graphs. Journal of Combinatorial Theory, Series B 82(1), 102–117 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. [MT01]
    Mohar, B., Thomassen, C.: Graphs on surfaces. Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press (2001)Google Scholar
  17. [PH10]
    Hlinený, P., Chimani, M.: Approximating the crossing number of graphs embeddable in any orientable surface. In: SODA, pp. 918–927 (2010)Google Scholar
  18. [RS90]
    Robertson, N., Seymour, P.D.: Graph minors. VIII. A Kuratowski theorem for general surfaces. J. Comb. Theory, Ser. B 48(2), 255–288 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [Tho89]
    Thomassen, C.: The graph genus problem is np-complete. J. Algorithms 10(4), 568–576 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  20. [Tho93]
    Thomassen, C.: Triangulating a surface with a prescribed graph. J. Comb. Theory, Ser. B 57(2), 196–206 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [Whi01]
    White, A.T.: Graphs of groups on surfaces: interactions and models. North-Holland mathematics studies. Elsevier (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yury Makarychev
    • 1
  • Amir Nayyeri
    • 2
  • Anastasios Sidiropoulos
    • 3
  1. 1.Toyota Technological Institute at ChicagoUSA
  2. 2.Carnegie Mellon UniversityUSA
  3. 3.University of Illinois at Urbana–ChampaignUSA

Personalised recommendations