A Pseudo-approximation for the Genus of Hamiltonian Graphs

  • Yury Makarychev
  • Amir Nayyeri
  • Anastasios Sidiropoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8096)


The genus of a graph is a very basic parameter in topological graph theory, that has been the subject of extensive study. Perhaps surprisingly, despite its importance, the problem of approximating the genus of a graph is very poorly understood. It has been shown to be NPcomplete by Thomassen [Tho89], and the best known upper bound for general graphs is an O(n)-approximation that follows by Euler’s characteristic.

We give a polynomial-time pseudo-approximation algorithm for the orientable genus of Hamiltonian graphs. More specifically, on input a graph G of orientable genus g, and a Hamiltonian path in G, our algorithm computes a drawing into a surface of either orientable, or nonorientable genus g O(1).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CH11]
    Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing number. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 122–134. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. [Chu11]
    Chuzhoy, J.: An algorithm for the graph crossing number problem. In: STOC, pp. 303–312 (2011)Google Scholar
  3. [CKK97]
    Chen, J., Kanchi, S.P., Kanevsky, A.: A note on approximating graph genus. Inf. Process. Lett. 61(6), 317–322 (1997)MathSciNetCrossRefGoogle Scholar
  4. [CMS11]
    Chuzhoy, J., Makarychev, Y., Sidiropoulos, A.: On graph crossing number and edge planarization. In: SODA, pp. 1050–1069 (2011)Google Scholar
  5. [CS]
    Chekuri, C., Sidiropoulos, A.: Approximating the genus of a graph. ManuscriptGoogle Scholar
  6. [FMR79]
    Filotti, I.S., Miller, G.L., Reif, J.H.: On determining the genus of a graph in O(v O(g)) steps. In: STOC, pp. 27–37 (1979)Google Scholar
  7. [GT01]
    Gross, J.L., Tucker, T.W.: Topological graph theory. Dover Publications (2001)Google Scholar
  8. [Hat02]
    Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)Google Scholar
  9. [HT74]
    Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)MathSciNetMATHCrossRefGoogle Scholar
  10. [KiMR08]
    Ken-ichi, Mohar, B., Reed, B.A.: A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width. In: FOCS, pp. 771–780 (2008)Google Scholar
  11. [LR99]
    Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)MathSciNetMATHCrossRefGoogle Scholar
  12. [MC08]
    Chimani, M., Hliněný, P., Mutzel, P.: Approximating the crossing number of apex graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 432–434. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. [MM92]
    Malnic, A., Mohar, B.: Generating locally cyclic triangulations of surfaces. Journal of Combinatorial Theory, Series B 56(2), 147–164 (1992)MathSciNetMATHCrossRefGoogle Scholar
  14. [Moh99]
    Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12(1), 6–26 (1999)MathSciNetMATHCrossRefGoogle Scholar
  15. [Moh01]
    Mohar, B.: Face covers and the genus problem for apex graphs. Journal of Combinatorial Theory, Series B 82(1), 102–117 (2001)MathSciNetMATHCrossRefGoogle Scholar
  16. [MT01]
    Mohar, B., Thomassen, C.: Graphs on surfaces. Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press (2001)Google Scholar
  17. [PH10]
    Hlinený, P., Chimani, M.: Approximating the crossing number of graphs embeddable in any orientable surface. In: SODA, pp. 918–927 (2010)Google Scholar
  18. [RS90]
    Robertson, N., Seymour, P.D.: Graph minors. VIII. A Kuratowski theorem for general surfaces. J. Comb. Theory, Ser. B 48(2), 255–288 (1990)MathSciNetMATHCrossRefGoogle Scholar
  19. [Tho89]
    Thomassen, C.: The graph genus problem is np-complete. J. Algorithms 10(4), 568–576 (1989)MathSciNetMATHCrossRefGoogle Scholar
  20. [Tho93]
    Thomassen, C.: Triangulating a surface with a prescribed graph. J. Comb. Theory, Ser. B 57(2), 196–206 (1993)MathSciNetMATHCrossRefGoogle Scholar
  21. [Whi01]
    White, A.T.: Graphs of groups on surfaces: interactions and models. North-Holland mathematics studies. Elsevier (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yury Makarychev
    • 1
  • Amir Nayyeri
    • 2
  • Anastasios Sidiropoulos
    • 3
  1. 1.Toyota Technological Institute at ChicagoUSA
  2. 2.Carnegie Mellon UniversityUSA
  3. 3.University of Illinois at Urbana–ChampaignUSA

Personalised recommendations