Feasible Combinatorial Matrix Theory

  • Ariel Germán Fernández
  • Michael Soltys
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8087)


We give the first, as far as we know, feasible proof of König’s Min-Max Theorem (KMM), a fundamental result in combinatorial matrix theory, and we show the equivalence of KMM to various Min-Max principles, with proofs of low complexity.


Proof Complexity Min-Max principle LA VTC0 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Aha83]
    Aharoni, R.: Menger’s theorem for graphs containing no infinite paths. European Journal of Combinatorics 4, 201–204 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BR91]
    Brualdi, R.A., Ryser, H.J.: Combinatorial Matrix Theory. Cambridge University Press (1991)Google Scholar
  3. [Bus86]
    Buss, S.R.: Bounded Arithmetic. Bibliopolis, Naples (1986)zbMATHGoogle Scholar
  4. [Bus90]
    Buss, S.R.: Axiomatizations and conservations results for fragments of Bounded Arithmetic. AMS Contemporary Mathematics 106, 57–84 (1990)MathSciNetCrossRefGoogle Scholar
  5. [CN10]
    Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge Univeristy Press (2010)Google Scholar
  6. [Dil50]
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51(1), 161–166 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [EW49]
    Everett, C.J., Whaples, G.: Representations of sequences of sets. American Journal of Mathematics 71(2), 287–293 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Gör00]
    Göring, F.: Short proof of Menger’s theorem. Discrete Mathematics 219, 295–296 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Hal87]
    Hall, P.: On representatives of subsets. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 58–62. Birkhäuser, Boston (1987)Google Scholar
  10. [HV50]
    Halmos, P.R., Vaughan, H.E.: The marriage problem. American Journal of Mathematics 72(1), 214–215 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [LC12]
    Lê, D.T.M., Cook, S.A.: Formalizing randomized matching algorithms. Logical Methods in Computer Science 8, 1–25 (2012)CrossRefGoogle Scholar
  12. [Men27]
    Menger, K.: Zur allgemeinen kurventheorie. Fund. Math. 10, 95–115 (1927)Google Scholar
  13. [Per63]
    Perles, M.A.: A proof of dilworth’s decomposition theorem for partially ordered sets. Israel Journal of Mathematics 1, 105–107 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Pym69]
    Pym, J.S.: A proof of Menger’s theorem. Monatshefte für Mathematik 73(1), 81–83 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [SC04]
    Soltys, M., Cook, S.: The proof complexity of linear algebra. Annals of Pure and Applied Logic 130(1-3), 207–275 (2004)MathSciNetCrossRefGoogle Scholar
  16. [Sol11]
    Soltys, M.: Feasible proofs of Szpilrajn’s theorem: a proof-complexity framework for concurrent automata. Journal of Automata, Languages and Combinatorics (JALC) 16(1), 27–38 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ariel Germán Fernández
    • 1
  • Michael Soltys
    • 1
  1. 1.McMaster UniversityHamiltonCanada

Personalised recommendations