Revisiting Space in Proof Complexity: Treewidth and Pathwidth

  • Moritz Müller
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8087)


So-called ordered variants of the classical notions of pathwidth and treewidth are introduced and proposed as proof theoretically meaningful complexity measures for the directed acyclic graphs underlying proofs. The ordered pathwidth of a proof is shown to be roughly the same as its formula space. Length-space lower bounds for R(k)-refutations are generalized to arbitrary infinity axioms and strengthened in that the space measure is relaxed to ordered treewidth.


Function Symbol Tree Decomposition Path Decomposition Teacher Position Graph Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complexity in propositional calculus. SIAM J. Comput. 31(4), 1184–1211 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. J. of Computer and System Sciences 74(3), 323–334 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bang-Jensen, J., Gutin, G.: Digraphs, 2nd edn. Springer Monographs in Mathematics. Springer-Verlag London Ltd., London (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Sasson, E.: Size-space tradeoffs for resolution. SIAM J. Comput. 38(6), 2511–2525 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separations and trade-offs via substitutions. ECCC 17, 125 (2010)Google Scholar
  6. 6.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44, 36–50 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dantchev, S., Riis, S.: On relativisation and complexity gap for resolution-based proof systems. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 142–154. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Esteban, J.L., Galesi, N., Messner, J.: On the complexity of resolution with bounded conjunctions. Theoretical Computer Science 321(2-3), 347–370 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Esteban, J.L., Torán, J.: Space bounds for resolution. Information and Computation 171(1), 84–97 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Combinatorial Theory, Series B 82(1), 138–154 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Information Processing Letters 42(6), 345–350 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kleine Büning, H., Lettman, T.: Propositional logic: deduction and algorithms. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  14. 14.
    Krajíček, J.: Bounded arithmetic, propositional logic, and complexity theory. Encyclopedia of Mathematics and its Applications, vol. 60. Cambridge Univ. Press (1995)Google Scholar
  15. 15.
    Krajíček, J.: On the weak pigeonhole principle. Fund. Math. 170(1-2), 123–140 (2001), Dedicated to the memory of Jerzy ŁośGoogle Scholar
  16. 16.
    Krajíček, J.: Combinatorics of first order structures and propositional proof systems. Archive for Mathematical Logic 43(4), 427–441 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Maciel, A., Pitassi, T., Woods, A.R.: A new proof of the weak pigeonhole principle. J. of Computer and System Sciences 64(4), 843–872 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mazala, R.: 2 Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Nordström, J.: Narrow proofs be spacious: separating space and width in resolution. SIAM J. Comput. 39(1), 59–121 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Paris, J., Wilkie, A.: Counting problems in bounded arithmetic. In: Methods in Mathematical Logic. LNM, vol. 1130, pp. 317–340 (1985)Google Scholar
  21. 21.
    Razborov, A.: Resolution lower bounds for the weak functional pigeonhole principle. Theoretical Computer Science 303(1), 233–243 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Riis, S.: A complexity gap for tree resolution. Comput. Compl. 10(3), 179–209 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Segerlind, N.: The complexity of propositional proofs. Bull. of Symbolic Logic 13(4), 417–481 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Segerlind, N., Buss, S., Impagliazzo, R.: A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM J. Comput. 33(5), 1171–1200 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stålmarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33(3), 277–280 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Moritz Müller
    • 1
  • Stefan Szeider
    • 2
  1. 1.Kurt Gödel Research CenterUniversity of ViennaViennaAustria
  2. 2.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations