Advertisement

Helly Circular-Arc Graph Isomorphism Is in Logspace

  • Johannes Köbler
  • Sebastian Kuhnert
  • Oleg Verbitsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8087)

Abstract

We present logspace algorithms for the canonical labeling problem and the representation problem of Helly circular-arc (HCA) graphs. The first step is a reduction to canonical labeling and representation of interval intersection matrices. In a second step, the Δ trees employed in McConnell’s linear time representation algorithm for interval matrices are adapted to the logspace setting and endowed with additional information to allow canonization. As a consequence, the isomorphism and recognition problems for HCA graphs turn out to be logspace complete.

Keywords

Interval Graph Interval Matrix Interval Representation Interval System Interval Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BL76]
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Che96]
    Chen, L.: Graph isomorphism and identification matrices: Parallel algorithms. Trans. Paral. Distrib. Syst. 7(3), 308–319 (1996)CrossRefGoogle Scholar
  3. [CLM+13]
    Curtis, A.R., Lin, M.C., McConnell, R.M., Nussbaum, Y., Soulignac, F.J., Spinrad, J.P., Szwarcfiter, J.L.: Isomorphism of graph classes related to the circular-ones property. Discrete Math. Theor. Comp. Sci. 15(1), 157–182 (2013)MathSciNetGoogle Scholar
  4. [Gav74]
    Gavril, F.: Algorithms on circular-arc graphs. Networks 4, 357–369 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Hsu95]
    Hsu, W.L.: O(m ·n) algorithms for the recognition and isomorphism problems on circular-arc graphs. SIAM J. Comput. 24(3), 411–439 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [JLM+11]
    Joeris, B.L., Lin, M.C., McConnell, R.M., Spinrad, J.P., Szwarcfiter, J.L.: Linear time recognition of helly circular-arc models and graphs. Algorithmica 59(2), 215–239 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [KKL+11]
    Köbler, J., Kuhnert, S., Laubner, B., Verbitsky, O.: Interval graphs: Canonical representations in logspace. SIAM J. Comput. 40(5), 1292–1315 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [KKV12]
    Köbler, J., Kuhnert, S., Verbitsky, O.: Solving the canonical representation and star system problems for proper circular-arc graphs in logspace. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) Proc. 32nd FSTTCS, Dagstuhl, Leibniz-Zentrum für Informatik. LIPIcs, vol. 18, pp. 387–399 (2012)Google Scholar
  9. [KKV13]
    Köbler, J., Kuhnert, S., Verbitsky, O.: Helly circular-arc graph isomorphism is in logspace. Electr. Colloq. Comput. Complexity (2013), TR13-074 http://eccc.hpi-web.de/report/2013/074/
  10. [KKW12]
    Köbler, J., Kuhnert, S., Watanabe, O.: Interval graph representation with given interval and intersection lengths. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 517–526. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. [LB79]
    Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph isomorphism. J. ACM 26(2), 183–195 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Lin92]
    Lindell, S.: A logspace algorithm for tree canonization. In: Proc. 24th STOC, pp. 400–404 (1992)Google Scholar
  13. [LSS08]
    Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: A simple linear time algorithm for the isomorphism problem on proper circular-arc graphs. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 355–366. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. [LS09]
    Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc graphs and subclasses: A survey. Discrete Math. 309(18), 5618–5635 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [McC03]
    McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Ueh13]
    Uehara, R.: Tractabilities and intractabilities on geometric intersection graphs. Algorithms 6(1), 60–83 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johannes Köbler
    • 1
  • Sebastian Kuhnert
    • 1
  • Oleg Verbitsky
    • 1
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinGermany

Personalised recommendations