Advertisement

Reachability in Higher-Order-Counters

  • Alexander Heußner
  • Alexander Kartzow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8087)

Abstract

Higher-order counter automata (HOCS) can be either seen as a restriction of higher-order pushdown automata (HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of HOCS: those that can test whether the topmost counter value is zero and those which cannot.

We show that control-state reachability for level k HOCS with 0-test is complete for (k − 2)-fold exponential space; leaving out the 0-test leads to completeness for (k − 2)-fold exponential time. Restricting HOCS (without 0-test) to level 2, we prove that global (forward or backward) reachability analysis is P-complete. This enhances the known result for pushdown systems which are subsumed by level 2 HOCS without 0-test.

We transfer our results to the formal language setting. Assuming that P \(\subsetneq\) PSPACE \(\subsetneq\) EXPTIME, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of HOPS and of HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet’s constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.

Keywords

Model Check Reachability Analysis Tree Automaton Storage Type Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Meyer, A.: Symbolic reachability analysis of higher-order context-free processes. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 135–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Broadbent, C., Carayol, A., Hague, M., Serre, O.: A saturation method for collapsible pushdown systems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 165–176. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Carayol, A., Wöhrle, S.: The caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Engelfriet, J.: Iterated stack automata and complexity classes. Inf. Comput. 95(1), 21–75 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Göller, S.: Reachability on prefix-recognizable graphs. Inf. Process. Lett. 108(2), 71–74 (2008)CrossRefGoogle Scholar
  9. 9.
    Hague, M., Ong, C.-H.L.: Symbolic backwards-reachability analysis for higher-order pushdown systems. LMCS 4(4) (2008)Google Scholar
  10. 10.
    Heußner, A., Kartzow, A.: Reachability in higher-order-counters. CoRR, arxiv:1306.1069 (2013), http://arxiv.org/abs/1306.1069
  11. 11.
    Jancar, P., Sawa, Z.: A note on emptiness for alternating finite automata with a one-letter alphabet. Inf. Process. Lett. 104(5), 164–167 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kartzow, A.: Collapsible pushdown graphs of level 2 are tree-automatic. Logical Methods in Computer Science 9(1) (2013)Google Scholar
  13. 13.
    Kartzow, A., Parys, P.: Strictness of the collapsible pushdown hierarchy. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 566–577. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Kobayashi, N.: Pumping by typing. To appear in Proc. LICS (2013)Google Scholar
  15. 15.
    Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Sov. Math., Dokl. 15, 1170–1174 (1974)zbMATHGoogle Scholar
  16. 16.
    Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission 12, 38–43 (1976)Google Scholar
  17. 17.
    Parys, P.: Variants of collapsible pushdown systems. In: Proc. of CSL 2012. LIPIcs, vol. 16, pp. 500–515 (2012)Google Scholar
  18. 18.
    Slaats, M.: Infinite regular games in the higher-order pushdown and the parametrized setting. PhD thesis, RWTH Aachen (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Heußner
    • 1
  • Alexander Kartzow
    • 2
  1. 1.Otto-Friedrich-Universität BambergGermany
  2. 2.Universität LeipzigGermany

Personalised recommendations