Solving 3-Superstring in 3n/3 Time

  • Alexander Golovnev
  • Alexander S. Kulikov
  • Ivan Mihajlin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8087)


In the shortest common superstring problem (SCS) one is given a set s 1, …, s n of n strings and the goal is to find a shortest string containing each s i as a substring. While many approximation algorithms for this problem have been developed, it is still not known whether it can be solved exactly in fewer than 2 n steps. In this paper we present an algorithm that solves the special case when all of the input strings have length 3 in time 3 n/3 and polynomial space. The algorithm generates a combination of a de Bruijn graph and an overlap graph, such that a SCS is then a shortest directed rural postman path (DRPP) on this graph. We show that there exists at least one optimal DRPP satisfying some natural properties. The algorithm works basically by exhaustive search, but on the reduced search space of such paths of size 3 n/3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bax, E., Franklin, J.: A Finite-Difference Sieve to Count Paths and Cycles by Length. Inf. Process. Lett. 60, 171–176 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bellman, R.: Dynamic Programming Treatment of the Travelling Salesman Problem. J. ACM 9, 61–63 (1962)CrossRefzbMATHGoogle Scholar
  3. 3.
    Björklund, A.: Determinant Sums for Undirected Hamiltonicity. In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS 2010, pp. 173–182. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  4. 4.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman problem in bounded degree graphs. ACM Trans. Algorithms 8(2), 18:1–18:13 (2012)Google Scholar
  5. 5.
    Calabro, C., Impagliazzo, R., Paturi, R.: A Duality between Clause Width and Clause Density for SAT. In: Proceedings of the 21st Annual IEEE Conference on Computational Complexity, CCC 2006, pp. 252–260. IEEE Computer Society (2006)Google Scholar
  6. 6.
    Christofides, N., Campos, V., Corberan, A., Mota, E.: An algorithm for the Rural Postman problem on a directed graph. In: Netflow at Pisa. Mathematical Programming Studies, vol. 26, pp. 155–166. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  7. 7.
    Crochemore, M., Cygan, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Algorithms for three versions of the shortest common superstring problem. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 299–309. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dantsin, E., Wolpert, A.: MAX-SAT for formulas with constant clause density can be solved faster than in O(2n) time. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 266–276. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Eiselt, H.A., Gendreau, M., Laporte, G.: Arc Routing Problems, Part II: The Rural Postman Problem. Operations Research 43(3), 399–414 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. Journal of Computer and System Sciences 20(1), 50–58 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Groves, G., van Vuuren, J.: Efficient heuristics for the Rural Postman Problem. ORiON 21(1), 33–51 (2005)CrossRefGoogle Scholar
  12. 12.
    Held, M., Karp, R.M.: The Traveling-Salesman Problem and Minimum Spanning Trees. Mathematical Programming 1, 6–25 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hertli, T.: 3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General. In: Foundations of Computer Science, FOCS, pp. 277–284 (October 2011)Google Scholar
  14. 14.
    Iwama, K., Nakashima, T.: An Improved Exact Algorithm for Cubic Graph TSP. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 108–117. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs. J. ACM 52, 602–626 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Karp, R.M.: Dynamic Programming Meets the Principle of Inclusion and Exclusion. Operations Research Letters 1(2), 49–51 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Karpinski, M., Schmied, R.: Improved Lower Bounds for the Shortest Superstring and Related Problems. CoRR abs/1111.5442 (2011)Google Scholar
  18. 18.
    Kohn, S., Gottlieb, A., Kohn, M.: A Generating Function Approach to the Traveling Salesman Problem. In: ACN 1977: Proceedings of the 1977 Annual Conference, New York, NY, USA, pp. 294–300 (1977)Google Scholar
  19. 19.
    Kulikov, A., Kutzkov, K.: New upper bounds for the problem of maximal satisfiability. Discrete Mathematics and Applications 19, 155–172 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lenstra, J.K., Kan, A.H.G.R.: Complexity of vehicle routing and scheduling problems. Networks 11(2), 221–227 (1981)CrossRefGoogle Scholar
  21. 21.
    Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 321–330. ACM (2010)Google Scholar
  22. 22.
    Moser, R.A., Scheder, D.: A full derandomization of Schöning’s k-SAT algorithm. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 245–252. ACM (2011)Google Scholar
  23. 23.
    Mucha, M.: Lyndon Words and Short Superstrings. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013. Society for Industrial and Applied Mathematics (to appear, 2013)Google Scholar
  24. 24.
    Paluch, K., Elbassioni, K., van Zuylen, A.: Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem. In: STACS 2012. LIPIcs, vol. 14, pp. 501–506 (2012)Google Scholar
  25. 25.
    Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sweedyk, Z.: \(2\frac{1}{2}\)-Approximation Algorithm for Shortest Superstring. SIAM J. Comput. 29(3), 954–986 (1999)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Vassilevska, V.: Explicit Inapproximability Bounds for the Shortest Superstring Problem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 793–800. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer Science 348(2-3), 357–365 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Golovnev
    • 1
  • Alexander S. Kulikov
    • 2
    • 3
  • Ivan Mihajlin
    • 4
  1. 1.New York UniversityUSA
  2. 2.St. Petersburg Department of SteklovInstitute of MathematicsUSA
  3. 3.Algorithmic Biology LaboratorySt. Petersburg Academic UniversityUSA
  4. 4.St. Petersburg Academic UniversityUSA

Personalised recommendations