Meta-kernelization with Structural Parameters

  • Robert Ganian
  • Friedrich Slivovsky
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8087)


Meta-kernelization theorems are general results that provide polynomial kernels for large classes of parameterized problems. The known meta-kernelization theorems, in particular the results of Bodlaender et al. (FOCS’09) and of Fomin et al. (FOCS’10), apply to optimization problems parameterized by solution size. We present meta-kernelization theorems that use structural parameters of the input and not the solution size. Let \(\mathcal{C}\) be a graph class. We define the \(\mathcal{C}\)- cover number of a graph to be the smallest number of modules the vertex set can be partitioned into such that each module induces a subgraph that belongs to the class \(\mathcal{C}\).

We show that each graph problem that can be expressed in Monadic Second Order (MSO) logic has a polynomial kernel with a linear number of vertices when parameterized by the \(\mathcal{C}\)- cover number for any fixed class \(\mathcal{C}\) of bounded rank-width (or equivalently, of bounded clique-width, or bounded Boolean-width). Many graph problems such as c-Coloring, c-Domatic Number and c-Clique Cover are covered by this meta-kernelization result.

Our second result applies to MSO expressible optimization problems, such as Minimum Vertex Cover, Minimum Dominating Set, and Maximum Clique. We show that these problems admit a polynomial annotated kernel with a linear number of vertices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. of Computer and System Sciences 75(8), 423–434 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (meta) kernelization. In: FOCS 2009, pp. 629–638. IEEE Computer Society (2009)Google Scholar
  5. 5.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: A combinatorial analysis through kernelization. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bui-Xuan, B.-M., Habib, M., Limouzy, V., de Montgolfier, F.: Algorithmic aspects of a general modular decomposition theory. Discr. Appl. Math. 157(9), 1993–2009 (2009)Google Scholar
  7. 7.
    Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical Computer Science 412(39), 5187–5204 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Charbit, P., de Montgolfier, F., Raffinot, M.: Linear time split decomposition revisited. SIAM J. Discrete Math. 26(2), 499–514 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chein, M., Habib, M., Maurer, M.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, New York (2000)Google Scholar
  13. 13.
    Downey, R., Fellows, M.R., Stege, U.: Parameterized complexity: A framework for systematically confronting computational intractability. In: Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. AMS-DIMACS, vol. 49, pp. 49–99. American Mathematical Society (1999)Google Scholar
  14. 14.
    Fellows, M.R.: The lost continent of polynomial time: Preprocessing and kernelization. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 276–277. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Fellows, M.R., Jansen, B.M., Rosamond, F.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. European J. Combin. 34(3), 541–566 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)Google Scholar
  17. 17.
    Fomin, F.V.: Kernelization. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 107–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar f-deletion: Approximation, kernelization and optimal fpt algorithms. In: FOCS 2012, pp. 470–479. IEEE Computer Society (2012)Google Scholar
  19. 19.
    Gajarský, J., Hliněný, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. CoRR, abs/1302.6863 (2013)Google Scholar
  20. 20.
    Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discr. Appl. Math. 158(7), 851–867 (2010)CrossRefMATHGoogle Scholar
  21. 21.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(2), 31–45 (2007)CrossRefGoogle Scholar
  22. 22.
    Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Libkin, L.: Elements of Finite Model Theory. Springer (2004)Google Scholar
  25. 25.
    Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Optimization 8(1), 110–128 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96(4), 514–528 (2006)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rosamond, F.: Table of races. In: Parameterized Complexity Newsletter, pp. 4–5 (2010),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Ganian
    • 1
  • Friedrich Slivovsky
    • 1
  • Stefan Szeider
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations