Minimal Indices for Successor Search

(Extended Abstract)
  • Sarel Cohen
  • Amos Fiat
  • Moshik Hershcovitch
  • Haim Kaplan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8087)

Abstract

We give a new successor data structure which improves upon the index size of the Pǎtraşcu-Thorup data structures, reducing the index size from O(nw4/5) bits to O(n logw) bits, with optimal probe complexity. Alternatively, our new data structure can be viewed as matching the space complexity of the (probe-suboptimal) z-fast trie of Belazzougui et al. Thus, we get the best of both approaches with respect to both probe count and index size. The penalty we pay is an extra O(logw) inter-register operations. Our data structure can also be used to solve the weak prefix search problem, the index size of O(n logw) bits is known to be optimal for any such data structure.

The technical contributions include highly efficient single word indices, with out-degree w/logw (compared to the w1/5 out-degree of fusion tree based indices). To construct such high efficiency single word indices we device highly efficient bit selectors which, we believe, are of independent interest.

Keywords

Predecessor Search Succinct Data Structures Cell Probe Model Fusion Trees Tries Word RAM model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, S., Fiat, A., Hershcovitch, M., Kaplan, H.: Minimal Indices for Successor Search [Full Vestion], in arXiv.org.Google Scholar
  2. 2.
    Andersson, A., Miltersen, P.B., Thorup, M.: Fusion trees can be implemented with AC(0) instructions only. Theor. Comput. Sci. 215(1-2), 337–344 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practice of monotone minimal perfect hashing. J. Exp. Algorithmics 16, 3.2 (2011)Google Scholar
  5. 5.
    Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing: searching a sorted table with o(1) accesses. In: SODA, pp. 785–794 (2009)Google Scholar
  6. 6.
    Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Fast prefix search in little space, with applications. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 427–438. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Brodnik, A., Miltersen, P.B., Munro, J.I.: Trans-dichotomous algorithms without multiplication - some upper and lower bounds. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 426–439. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Drepper, U.: What every programmer should know about memory (2007), http://lwn.net/Articles/250967/
  9. 9.
    Ferragina, P., Grossi, R.: The string B-tree: a new data structure for string search in external memory and its applications. J. ACM 46, 236–280 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with fusion trees. Journal of Computer and System Sciences 47(3), 424–436 (1993)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fredman, M.L., Willard, D.E.: Trans-dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths. In: FOCS, pp. 719–725 (1990)Google Scholar
  12. 12.
    Miltersen, P.B.: Lower bounds for static dictionaries on rams with bit operations but no multiplication. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 442–453. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Pǎtraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: STOC, pp. 232–240 (2006)Google Scholar
  15. 15.
    Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84 (2011)CrossRefGoogle Scholar
  16. 16.
    Thorup, M.: On AC0 implementations of fusion trees and atomic heaps. In: SODA, pp. 699–707 (2003)Google Scholar
  17. 17.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett. 6(3), 80–82 (1977)CrossRefMATHGoogle Scholar
  18. 18.
    Willard, D.E.: Log-logarithmic worst-case range queries are possible in space t(n). Information Processing Letters 17(2), 81–84 (1983)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sarel Cohen
    • 1
  • Amos Fiat
    • 1
  • Moshik Hershcovitch
    • 1
  • Haim Kaplan
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityIsrael

Personalised recommendations