Advertisement

Semilinearity and Context-Freeness of Languages Accepted by Valence Automata

  • P. Buckheister
  • Georg Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8087)

Abstract

Valence automata are a generalization of various models of automata with storage. Here, each edge carries, in addition to an input word, an element of a monoid. A computation is considered valid if multiplying the monoid elements on the visited edges yields the identity element. By choosing suitable monoids, a variety of automata models can be obtained as special valence automata. This work is concerned with the accepting power of valence automata. Specifically, we ask for which monoids valence automata can accept only context-free languages or only languages with semilinear Parikh image, respectively. First, we present a characterization of those graph products (of monoids) for which valence automata accept only context-free languages. Second, we provide a necessary and sufficient condition for a graph product of copies of the bicyclic monoid and the integers to yield only languages with semilinear Parikh image when used as a storage mechanism in valence automata. Third, we show that all languages accepted by valence automata over torsion groups have a semilinear Parikh image.

Keywords

Free Product Graph Product Regular Language Storage Mechanism Torsion Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adian, S.I.: The Burnside problem and related topics. Russian Mathematical Surveys 65(5), 805–855 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963)CrossRefGoogle Scholar
  3. 3.
    Dirac, G.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25(1-2), 71–76 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gilman, R.H.: Formal Languages and Infinite Groups. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 25, pp. 27–51. American Mathematical Society (1996)Google Scholar
  5. 5.
    Green, R.E.: Graph Products of Groups. Ph.D. thesis, University of Leeds (1990)Google Scholar
  6. 6.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science 7(3), 311–324 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Howie, J.M.: Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995)zbMATHGoogle Scholar
  8. 8.
    Jantzen, M.: Eigenschaften von Petrinetzsprachen. Ph.D. thesis, Universität Hamburg (1979)Google Scholar
  9. 9.
    Kambites, M.: Formal languages and groups as memory. Communications in Algebra 37, 193–208 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kopczynski, E., To, A.: Parikh images of grammars: Complexity and applications. In: Proceedings of LICS 2010, pp. 80–89 (2010)Google Scholar
  11. 11.
    Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept. Journal of Combinatorial Theory, Series A 13(3), 297–305 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    van Leeuwen, J.: A generalisation of Parikh’s theorem in formal language theory. In: Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 17–26. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  13. 13.
    Lohrey, M., Sénizergues, G.: When is a graph product of groups virtually-free? Communications in Algebra 35(2), 617–621 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lohrey, M., Sénizergues, G.: Rational subsets in HNN-extensions and amalgamated products. Internat. J. Algebra Comput. 18(01), 111–163 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lohrey, M., Steinberg, B.: The submonoid and rational subset membership problems for graph groups. J. Algebra 320(2), 728–755 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Render, E.: Rational Monoid and Semigroup Automata. Ph.D. thesis, University of Manchester (2010)Google Scholar
  17. 17.
    Wolk, E.S.: A note on ”the comparability graph of a tree”. Proceedings of the American Mathematical Society 16(1), 17–20 (1965)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zetzsche, G.: On the capabilities of grammars, automata, and transducers controlled by monoids. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 222–233. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Zetzsche, G.: Silent transitions in automata with storage. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 434–445. Springer, Heidelberg (2013), http://arxiv.org/abs/1302.3798 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Buckheister
    • 1
  • Georg Zetzsche
    • 1
  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternGermany

Personalised recommendations