Advertisement

Probability-Based Dynamic Time Warping for Gesture Recognition on RGB-D Data

  • Miguel Ángel Bautista
  • Antonio Hernández-Vela
  • Victor Ponce
  • Xavier Perez-Sala
  • Xavier Baró
  • Oriol Pujol
  • Cecilio Angulo
  • Sergio Escalera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7854)

Abstract

Dynamic Time Warping (DTW) is commonly used in gesture recognition tasks in order to tackle the temporal length variability of gestures. In the DTW framework, a set of gesture patterns are compared one by one to a maybe infinite test sequence, and a query gesture category is recognized if a warping cost below a certain threshold is found within the test sequence. Nevertheless, either taking one single sample per gesture category or a set of isolated samples may not encode the variability of such gesture category. In this paper, a probability-based DTW for gesture recognition is proposed. Different samples of the same gesture pattern obtained from RGB-Depth data are used to build a Gaussian-based probabilistic model of the gesture. Finally, the cost of DTW has been adapted accordingly to the new model. The proposed approach is tested in a challenging scenario, showing better performance of the probability-based DTW in comparison to state-of-the-art approaches for gesture recognition on RGB-D data.

Keywords

Depth maps Gesture Recognition Dynamic Time Warping Statistical Pattern Recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(1/2), 43–72 (2005)CrossRefGoogle Scholar
  2. 2.
    ChaLearn Gesture Dataset (CGD 2011), ChaLearn, California, Copyright (c) ChaLearn - 2011 (2011)Google Scholar
  3. 3.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)MATHCrossRefGoogle Scholar
  4. 4.
    Reyes, M., Dominguez, G., Escalera, S.: Feature weighting in dynamic time warping for gesture recognition in depth data. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1182–1188 (2011)Google Scholar
  5. 5.
    Zhou, F., la Torre, F.D., Hodgins, J.K.: Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Transaction on Pattern Analysis and Machine Intelligence 35(3), 582–596 (2010)CrossRefGoogle Scholar
  6. 6.
    Lv, F., Nevatia, R.: Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8, 17–22 (2007)Google Scholar
  7. 7.
    Svensen, M., Bishop, C.M.: Robust bayesian mixture modelling. In: Proceedings of European Symposium on Artificial Neural Networks, vol. 64, pp. 235–252 (2005)Google Scholar
  8. 8.
    Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N., Lu, M., Merkl, H., Pankanti, S.: Smart video surveillance: exploring the concept of multiscale spatiotemporal tracking. IEEE Signal Processing Magazine 22(2), 38–51 (2005)CrossRefGoogle Scholar
  9. 9.
    Pentland, A.: Socially aware computation and communication. Computer 38, 33–40 (2005)CrossRefGoogle Scholar
  10. 10.
    Starner, T., Pentland, A.: Real-time American Sign Language recognition from video using hidden Markov models. In: Proceedings of the International Symposium on Computer Vision, pp. 265–270 (1995)Google Scholar
  11. 11.
    Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Communications of the ACM 56, 116–124 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel Ángel Bautista
    • 1
    • 2
  • Antonio Hernández-Vela
    • 1
    • 2
  • Victor Ponce
    • 1
    • 2
  • Xavier Perez-Sala
    • 2
    • 3
  • Xavier Baró
    • 2
    • 4
  • Oriol Pujol
    • 1
    • 2
  • Cecilio Angulo
    • 3
  • Sergio Escalera
    • 1
    • 2
  1. 1.Dept. Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain
  2. 2.Centre de Visió per ComputadorCampus UABBarcelonaSpain
  3. 3.CETpD-UPCUniversitat Politècnica de Catalunya NeàpolisVilanova i la GeltrúSpain
  4. 4.EIMTUniversitat Oberta de CatalunyaBarcelonaSpain

Personalised recommendations