Advertisement

Posture Analysis and Range of Movement Estimation Using Depth Maps

  • Miguel Reyes
  • Albert Clapés
  • Sergio Escalera
  • José Ramírez
  • Juan R. Revilla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7854)

Abstract

World Health Organization estimates that 80% of the world population is affected of back pain during his life. Current practices to analyze back problems are expensive, subjective, and invasive. In this work, we propose a novel tool for posture and range of movement estimation based on the analysis of 3D information from depth maps. Given a set of keypoints defined by the user, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matching using a novel point-to-point fitting procedure, and accurate measurements about posture, spinal curvature, and range of movement are computed. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent musculoskeletal disorders, such as back pain, as well as tracking the posture evolution of patients in rehabilitation treatments.

Keywords

Depth maps Physiotherapy Posture Analysis Range of Movement Estimation Rehabilitation Statistical Pattern Recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Microsoft Corporation. Kinect for windows sdk beta programming guide beta 1 draft version 1.1 (2012)Google Scholar
  2. 2.
    Freedman, B., Shpunt, A., Machline, M., Arieli, Y.: 2008 - depth mapping using projected patterns.pdf, p. 12 (2010)Google Scholar
  3. 3.
    Koontz, A.M., Lin, Y.-S., Kankipati, P., Boninger, M.L., Cooper, R.A.: Development of custom measurement system for biomechanical evaluation of independent wheelchair transfers, vol. 48, pp. 1015–1028 (2011)Google Scholar
  4. 4.
    Leroux, M.A., Zabjek, K.: A noninvasive anthropometric technique for measuring kyphosis and lordosis: application for scoliosis, vol. 25, pp. 1689–1694 (2000)Google Scholar
  5. 5.
    Mikic, I., Trivedi, M., Hunter, E., Cosman, P.: Articulated Body Posture Estimation from Multi-Camera Voxel Data. In: CVPR, pp. 455–460 (2001)Google Scholar
  6. 6.
    Mori, G., Belongie, S., Malik, J.: Efficient shape matching using shape contexts. TPAMI 27, 1832–1837 (2005)CrossRefGoogle Scholar
  7. 7.
    Potmesil, M., Chakravarty, I.: A lens and aperture camera model for synthetic image generation, vol. 15, pp. 297–305. ACM, New York (1981)Google Scholar
  8. 8.
    Estépar, R.S.J., Brun, A., Westin, C.-F.: Robust generalized total least squares iterative closest point registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 234–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T.: Real-time human pose recognition in parts from single depth images. In: CVPR, pp. 1297–1304 (2011)Google Scholar
  10. 10.
    Yao, J., Ruggeri, M.R., Taddei, P.: Automatic scan registration using 3d linear and planar features, vol. 1, pp. 22:1–22:18. Springer, SecaucusGoogle Scholar
  11. 11.
    Zhang, Z.: A flexible new technique for camera calibration. TPAMI 22(11), 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel Reyes
    • 1
    • 2
  • Albert Clapés
    • 1
    • 2
  • Sergio Escalera
    • 1
    • 2
  • José Ramírez
    • 3
  • Juan R. Revilla
    • 3
  1. 1.Dept. Matemàtica Aplicada i AnàlisiUBBarcelonaSpain
  2. 2.Computer Vision CenterCampus UABBarcelonaSpain
  3. 3.Instituto de Fisioterapia Global MezièresBarcelonaSpain

Personalised recommendations