Advertisement

Taming Elephants, or How to Embed Parallelism into PostgreSQL

  • Constantin S. Pan
  • Mikhail L. Zymbler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8055)

Abstract

The paper describes the design and the implementation of PargreSQL parallel database management system (DBMS) for cluster systems. PargreSQL is based on PostgreSQL open-source DBMS and exploits partitioned parallelism. Presented experimental results show that this scheme is worthy of further development.

Keywords

Query Processing Fragmentation Function Exchange Operator Cluster System Query Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.: HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2(1), 922–933 (2009)Google Scholar
  2. 2.
    DeWitt, D.J., Gray, J.: Parallel Database Systems: The Future of High Performance Database Systems. Commun. ACM 35(6), 85–98 (1992)CrossRefGoogle Scholar
  3. 3.
    Graefe, G.: Encapsulation of parallelism in the volcano query processing system. In: Garcia-Molina, H., Jagadish, H.V. (eds.) SIGMOD Conference, pp. 102–111. ACM Press (1990)Google Scholar
  4. 4.
    Kotowski, N., Lima, A.A.B., Pacitti, E., Valduriez, P., Mattoso, M.: Parallel query processing for OLAP in grids. Concurrency and Computation: Practice and Experience 20(17), 2039–2048 (2008)CrossRefGoogle Scholar
  5. 5.
    Lee, R., Zhou, M.: Extending PostgreSQL to Support Distributed/Heterogeneous Query Processing. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 1086–1097. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Lepikhov, A.V., Sokolinsky, L.B.: Query processing in a DBMS for cluster systems. Programming and Computer Software 36(4), 205–215 (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Paes, M., Lima, A.A.B., Valduriez, P., Mattoso, M.: High-Performance Query Processing of a Real-World OLAP Database with ParGRES. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds.) VECPAR 2008. LNCS, vol. 5336, pp. 188–200. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Pan, C.: Development of a parallel dbms on the basis of postgresql. In: Turdakov, D., Simanovsky, A. (eds.) SYRCoDIS. CEUR Workshop Proceedings, vol. 735, pp. 57–61. CEUR-WS.org (2011)Google Scholar
  9. 9.
    Paulson, L.D.: Open source databases move into the marketplace. IEEE Computer, 13–15 (2004)Google Scholar
  10. 10.
    Sokolinsky, L.B.: Organization of Parallel Query Processing in Multiprocessor Database Machines with Hierarchical Architecture. Programming and Computer Software 27(6), 297–308 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Constantin S. Pan
    • 1
  • Mikhail L. Zymbler
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations