NoizCrowd: A Crowd-Based Data Gathering and Management System for Noise Level Data
Abstract
Many systems require access to very large amounts of data to properly function, like systems allowing to visualize or predict meteorological changes in a country over a given period of time, or any other system holding, processing and displaying scientific or sensor data. However, filling out a database with large amounts of valuable data can be a difficult, costly and time-consuming task. In this paper, we present techniques to create large amounts of data by combining crowdsourcing, data generation models, mobile computing, and big data analytics. We have implemented our methods in a system, NoizCrowd, allowing to crowdsource noise levels in a given region and to generate noise models by using state-of-the-art noise propagation models and array data management techniques. The resulting models and data can then be accessed using a visual interface.
Keywords
Global Position System Noise Level Mobile Phone Sound Level Interpolation ModelPreview
Unable to display preview. Download preview PDF.
References
- 1.Barreiro-Hurl, J., Sanchez, M., Viladrich-Grau, M.: How much are people willing to pay for silence? a contingent valuation study. Applied Economics 37(11), 1233–1246 (2005)CrossRefGoogle Scholar
- 2.Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: Workshop on World-Sensor-Web (WSW 2006): Mobile Device Centric Sensor Networks and Applications, pp. 117–134 (2006)Google Scholar
- 3.Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A., Lu, H., Zheng, X., Musolesi, M., Fodor, K., Ahn, G.-S.: The rise of people-centric sensing. IEEE Internet Computing 12(4), 12–21 (2008)CrossRefGoogle Scholar
- 4.Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in mobile participatory sensing applications. Journal of Systems and Software 84(11), 1928–1946 (2011)CrossRefGoogle Scholar
- 5.Cudré-Mauroux, P., Kimura, H., Lim, K.-T., Rogers, J., Simakov, R., Soroush, E., Velikhov, P., Wang, D.L., Balazinska, M., Becla, J., DeWitt, D.J., Heath, B., Maier, D., Madden, S., Patel, J.M., Stonebraker, M., Zdonik, S.B.: A Demonstration of SciDB: A Science-Oriented DBMS. PVLDB 2(2), 1534–1537 (2009)Google Scholar
- 6.Cuff, D., Hansen, M., Kang, J.: Urban sensing: out of the woods. ACM Communications 51(3), 24–33 (2008)CrossRefGoogle Scholar
- 7.Deng, L., Cox, L.P.: Livecompare: grocery bargain hunting through participatory sensing. In: Proceedings of the 10th Workshop on Mobile Computing Systems and Applications, HotMobile 2009, pp. 4:1–4:6. ACM, New York (2009)Google Scholar
- 8.DiSalvo, C., Nourbakhsh, I., Holstius, D., Akin, A., Louw, M.: The neighborhood networks project: a case study of critical engagement and creative expression through participatory design. In: Proceedings of the Tenth Anniversary Conference on Participatory Design 2008, PDC 2008, pp. 41–50. Indiana University, Indianapolis (2008)Google Scholar
- 9.DHondt, E., Stevens, M., Jacobs, A.: Participatory noise mapping works! an evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. In: Pervasive and Mobile Computing (2012)Google Scholar
- 10.Ganti, R.K., Pham, N., Ahmadi, H., Nangia, S., Abdelzaher, T.F.: Greengps: a participatory sensing fuel-efficient maps application. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, MobiSys 2010, pp. 151–164. ACM, New York (2010)Google Scholar
- 11.Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Communications Magazine 49(11), 32–39 (2011)CrossRefGoogle Scholar
- 12.Kanjo, E.: Noisespy: A real-time mobile phone platform for urban noise monitoring and mapping. Mob. Netw. Appl. 15(4), 562–574 (2010)CrossRefGoogle Scholar
- 13.Lamancusa, J.S.: Outdoor sound propagation, pp. 10.6–10.7. Penn State University, PAGoogle Scholar
- 14.Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Communications Magazine 48(9), 140–150 (2010)CrossRefGoogle Scholar
- 15.Lu, H., Pan, W., Lane, N.D., Choudhury, T., Campbell, A.T.: Soundsense: scalable sound sensing for people-centric applications on mobile phones. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, MobiSys 2009, pp. 165–178. ACM, New York (2009)Google Scholar
- 16.Martí, I.G., Rodríguez, L.E., Benedito, M., Trilles, S., Beltrán, A., Díaz, L., Huerta, J.: Mobile application for noise pollution monitoring through gamification techniques. In: Herrlich, M., Malaka, R., Masuch, M. (eds.) ICEC 2012. LNCS, vol. 7522, pp. 562–571. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 17.Mendez, D., Labrador, M., Ramachandran, K.: Data interpolation for participatory sensing systems. Pervasive and Mobile Computing 9(1), 132–148 (2013); Special Section: Pervasive SustainabilityGoogle Scholar
- 18.Moudon, A.V.: Real noise from the urban environment: How ambient community noise affects health and what can be done about it. American Journal of Preventive Medicine 37(2), 167–171 (2009)CrossRefGoogle Scholar
- 19.Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R., Boda, P.: Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, MobiSys 2009, pp. 55–68. ACM, New York (2009)Google Scholar
- 20.Philipp, D., Stachowiak, J., Alt, P., Dürr, F., Rothermel, K.: DrOPS: Model-Driven Optimization for Public Sensing Systems. In: 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom) (PerCom 2013), pp. 1–8. IEEE Computer Society, San Diego (2013)Google Scholar
- 21.Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end participatory urban noise mapping system. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2010, pp. 105–116. ACM, New York (2010)CrossRefGoogle Scholar
- 22.Reddy, S., Estrin, D., Srivastava, M.: Recruitment framework for participatory sensing data collections. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 138–155. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 23.Ruge, L., Altakrouri, B., Schrader, A.: Soundofthecity - continuous noise monitoring for a healthy city. In: 5th International Workshop on Smart Environments and Ambient Intelligence (SENAmI 2013) at IEEE International Conference on Pervasive Computing and Communication (PerCom 2013), San Diego, California, USA, March 18-22 (2013)Google Scholar
- 24.Schweizer, I., Bärtl, R., Schulz, A., Probst, F., Mühlhäuser, M.: Noisemap - real-time participatory noise maps. In: Second International Workshop on Sensing Applications on Mobile Phones, ACM SenSys 2011 (2011)Google Scholar
- 25.Seering, A., Cudré-Mauroux, P., Madden, S., Stonebraker, M.: Efficient Versioning for Scientific Array Databases. In: ICDE, pp. 1013–1024. IEEE Computer Society (2012)Google Scholar
- 26.Wylot, M., Pont, J., Wisniewski, M., Cudré-Mauroux, P.: dipLODocus [RDF]—Short and Long-Tail RDF Analytics for Massive Webs of Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 778–793. Springer, Heidelberg (2011)CrossRefGoogle Scholar